# interpolateTemperature

Interpolate temperature in thermal result at arbitrary spatial locations

## Syntax

## Description

returns the interpolated temperature values at the 2-D points specified in
`Tintrp`

= interpolateTemperature(`thermalresults`

,`xq`

,`yq`

)`xq`

and `yq`

for a steady-state thermal
model.

returns the interpolated temperature values at the 3-D points specified in
`Tintrp`

= interpolateTemperature(`thermalresults`

,`xq`

,`yq`

,`zq`

)`xq`

, `yq`

, and `zq`

for a
steady-state thermal model.

returns the interpolated temperature values at the points in
`Tintrp`

= interpolateTemperature(`thermalresults`

,`querypoints`

)`querypoints`

for a steady-state thermal model.

## Examples

### Interpolate Temperatures in 2-D Steady-State Thermal Model

Create a thermal model for steady-state analysis.

`thermalmodel = createpde("thermal");`

Create the geometry and include it in the model.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]'; g = decsg(R1, 'R1', ('R1')'); geometryFromEdges(thermalmodel,g); pdegplot(thermalmodel,"EdgeLabels","on") xlim([-1.5,1.5]) axis equal

Assuming that this is an iron plate, assign a thermal conductivity of 79.5 W/(m*K). Because this is a steady-state model, you do not need to assign mass density or specific heat values.

thermalProperties(thermalmodel,"ThermalConductivity",79.5,"Face",1);

Apply a constant temperature of 300 K to the bottom of the plate (edge 3). Also, assume that the top of the plate (edge 1) is insulated, and apply convection on the two sides of the plate (edges 2 and 4).

thermalBC(thermalmodel,"Edge",3,"Temperature",300); thermalBC(thermalmodel,"Edge",1,"HeatFlux",0); thermalBC(thermalmodel,"Edge",[2,4],... "ConvectionCoefficient",25,... "AmbientTemperature",50);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel); results = solve(thermalmodel)

results = SteadyStateThermalResults with properties: Temperature: [1529x1 double] XGradients: [1529x1 double] YGradients: [1529x1 double] ZGradients: [] Mesh: [1x1 FEMesh]

The solver finds the values of temperatures and temperature gradients at the nodal locations. To access these values, use `results.Temperature`

, `results.XGradients`

, and so on. For example, plot the temperatures at nodal locations.

figure; pdeplot(thermalmodel,"XYData",results.Temperature,... "Contour","on","ColorMap","hot");

Interpolate the resulting temperatures to a grid covering the central portion of the geometry, for `x`

and `y`

from `-0.5`

to `0.5`

.

v = linspace(-0.5,0.5,11); [X,Y] = meshgrid(v); Tintrp = interpolateTemperature(results,X,Y);

Reshape the `Tintrp`

vector and plot the resulting temperatures.

Tintrp = reshape(Tintrp,size(X)); figure contourf(X,Y,Tintrp) colormap(hot) colorbar

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]'; Tintrp = interpolateTemperature(results,querypoints);

### Interpolate Temperature for a 3-D Steady-State Thermal Model

Create a thermal model for steady-state analysis.

`thermalmodel = createpde("thermal");`

Create the following 3-D geometry and include it in the model.

importGeometry(thermalmodel,"Block.stl"); pdegplot(thermalmodel,"FaceLabels","on","FaceAlpha",0.5) title("Copper block, cm") axis equal

Assuming that this is a copper block, the thermal conductivity of the block is approximately 4 W/(cm*K).

`thermalProperties(thermalmodel,"ThermalConductivity",4);`

Apply a constant temperature of 373 K to the left side of the block (edge 1) and a constant temperature of 573 K at the right side of the block.

thermalBC(thermalmodel,"Face",1,"Temperature",373); thermalBC(thermalmodel,"Face",3,"Temperature",573);

Apply a heat flux boundary condition to the bottom of the block.

thermalBC(thermalmodel,"Face",4,"HeatFlux",-20);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel); thermalresults = solve(thermalmodel)

thermalresults = SteadyStateThermalResults with properties: Temperature: [12756x1 double] XGradients: [12756x1 double] YGradients: [12756x1 double] ZGradients: [12756x1 double] Mesh: [1x1 FEMesh]

The solver finds the values of temperatures and temperature gradients at the nodal locations. To access these values, use `results.Temperature`

, `results.XGradients`

, and so on. For example, plot temperatures at nodal locations.

```
figure;
pdeplot3D(thermalmodel,"ColorMapData",thermalresults.Temperature)
```

Create a grid specified by `x`

, `y`

, and `z`

coordinates and interpolate temperatures to the grid.

[X,Y,Z] = meshgrid(1:16:100,1:6:20,1:7:50); Tintrp = interpolateTemperature(thermalresults,X,Y,Z);

Create a contour slice plot for fixed values of the `y`

coordinate.

figure Tintrp = reshape(Tintrp,size(X)); contourslice(X,Y,Z,Tintrp,[],1:6:20,[]) xlabel("x") ylabel("y") zlabel("z") xlim([1,100]) ylim([1,20]) zlim([1,50]) axis equal view(-50,22) colorbar

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:),Z(:)]'; Tintrp = interpolateTemperature(thermalresults,querypoints);

Create a contour slice plot for four fixed values of the `z`

coordinate.

figure Tintrp = reshape(Tintrp,size(X)); contourslice(X,Y,Z,Tintrp,[],[],1:7:50) xlabel("x") ylabel("y") zlabel("z") xlim([1,100]) ylim([1,20]) zlim([1,50]) axis equal view(-50,22) colorbar

### Temperatures for a Transient Thermal Model on a Square

Solve a 2-D transient heat transfer problem on a square domain and compute temperatures at the convective boundary.

Create a transient thermal model for this problem.

thermalmodel = createpde("thermal","transient");

Create the geometry and include it in the model.

g = @squareg; geometryFromEdges(thermalmodel,g); pdegplot(thermalmodel,"EdgeLabels","on") xlim([-1.2,1.2]) ylim([-1.2,1.2]) axis equal

Assign the following thermal properties:

Thermal conductivity is 100 W/(m*C)

Mass density is 7800 kg/m^3

Specific heat is 500 J/(kg*C)

thermalProperties(thermalmodel,"ThermalConductivity",100,... "MassDensity",7800,... "SpecificHeat",500);

Apply insulated boundary conditions on three edges and the free convection boundary condition on the right edge.

thermalBC(thermalmodel,"Edge",[1,3,4],"HeatFlux",0); thermalBC(thermalmodel,"Edge",2,... "ConvectionCoefficient",5000,... "AmbientTemperature",25);

Set the initial conditions: uniform room temperature across domain and higher temperature on the left edge.

```
thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,"Edge",4);
```

Generate a mesh and solve the problem using `0:1000:200000`

as a vector of times.

generateMesh(thermalmodel); tlist = 0:1000:200000; thermalresults = solve(thermalmodel,tlist);

Define a line at convection boundary and compute temperature gradients across that line.

X = -1:0.1:1; Y = ones(size(X)); Tintrp = interpolateTemperature(thermalresults,X,Y,1:length(tlist));

Plot the interpolated temperature `Tintrp`

along the `x`

axis for the following values from the time interval `tlist`

.

figure t = [51:50:201]; for i = t p(i) = plot(X,Tintrp(:,i),"DisplayName", ... strcat("t=",num2str(tlist(i)))); hold on end legend(p(t)) xlabel("x") ylabel("Tintrp")

## Input Arguments

`thermalresults`

— Solution of thermal problem

`SteadyStateThermalResults`

object | `TransientThermalResults`

object

Solution of thermal problem, specified as a `SteadyStateThermalResults`

object or
a `TransientThermalResults`

object.
Create `thermalresults`

using
`solve`

.

`xq`

— *x*-coordinate query points

real array

*x*-coordinate query points, specified as a real array.
`interpolateTemperature`

evaluates temperatures at
the 2-D coordinate points `[xq(i),yq(i)]`

or at the 3-D
coordinate points `[xq(i),yq(i),zq(i)]`

. So
`xq`

, `yq`

, and (if present)
`zq`

must have the same number of entries.

`interpolateTemperature`

converts query points to
column vectors `xq(:)`

, `yq(:)`

, and (if
present) `zq(:)`

. It returns temperatures in the form of a
column vector of the same size. To ensure that the dimensions of the
returned solution is consistent with the dimensions of the original query
points, use `reshape`

. For example, use ```
Tintrp =
reshape(Tintrp,size(xq))
```

.

**Data Types: **`double`

`yq`

— *y*-coordinate query points

real array

*y*-coordinate query points, specified as a real array.
`interpolateTemperature`

evaluates temperatures at
the 2-D coordinate points `[xq(i),yq(i)]`

or at the 3-D
coordinate points `[xq(i),yq(i),zq(i)]`

. So
`xq`

, `yq`

, and (if present)
`zq`

must have the same number of entries.
Internally, `interpolateTemperature`

converts query
points to the column vector `yq(:)`

.

**Data Types: **`double`

`zq`

— *z*-coordinate query points

real array

*z*-coordinate query points, specified as a real array.
`interpolateTemperature`

evaluates temperatures at
the 3-D coordinate points `[xq(i),yq(i),zq(i)]`

. So
`xq`

, `yq`

, and
`zq`

must have the same number of entries. Internally,
`interpolateTemperature`

converts query points to the
column vector `zq(:)`

.

**Data Types: **`double`

`querypoints`

— Query points

real matrix

Query points, specified as a real matrix with either two rows for 2-D
geometry, or three rows for 3-D geometry. `interpolateTemperature`

evaluates temperatures at the
coordinate points `querypoints(:,i)`

, so each column of
`querypoints`

contains exactly one 2-D or 3-D query
point.

**Example: **For 2-D geometry, ```
querypoints = [0.5,0.5,0.75,0.75;
1,2,0,0.5]
```

**Data Types: **`double`

`iT`

— Time indices

vector of positive integers

Time indices, specified as a vector of positive integers. Each
entry in `iT`

specifies a time index.

**Example: **`iT = 1:5:21`

specifies every fifth
time-step up to 21.

**Data Types: **`double`

## Output Arguments

`Tintrp`

— Temperatures at query points

array

Temperatures at query points, returned as an array. For query points that
are outside the geometry, `Tintrp`

=
`NaN`

.

## Version History

**Introduced in R2017a**

## MATLAB Command

You clicked a link that corresponds to this MATLAB command:

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)