# Average-Value Voltage Source Converter (Three-Phase)

Average-value bidirectional AC/DC voltage source converter

**Libraries:**

Simscape /
Electrical /
Semiconductors & Converters /
Converters

## Description

The Average-Value Voltage Source Converter (Three-Phase) block converts electrical energy from AC to DC voltage or from DC to AC voltage according to an input three-phase modulation wave. You can specify the modulation wave directly or through phasor quantities such as the magnitude and phase shift. The corresponding input power is equal to the sum of the fixed power loss and the output power.

This block can work in both time and frequency-and-time simulation modes. If you set the
**AC frequency** parameter to `Variable`

,
this block works only in time simulation mode. If you select
`Constant`

, this block works in both time and
frequency-time simulation modes. For more information, see Frequency and Time Simulation Mode.

### Losses Parameterization

Switching losses, conduction losses, and quiescent losses are the main heat sources for a converter.

The switching losses are defined by this equation:

$${P}_{switching}={k}_{s}{v}_{dc}{I}_{rms}$$

where:

*k*is the proportionality constant that depends on the turn-on and turn-off intervals and switching frequency. Specify this value by setting the_{s}**Switching losses coefficient, ks**parameter.*v*is the dc-link voltage._{dc}$${I}_{rms}=\frac{\sqrt{{\left({i}_{a}-{i}_{dc}\right)}^{2}+{\left({i}_{b}-{i}_{dc}\right)}^{2}+{\left({i}_{c}-{i}_{dc}\right)}^{2}}}{\sqrt{3}}$$ is the root mean square (RMS) phase current, where $${i}_{dc}=\frac{{i}_{a}+{i}_{b}+{i}_{c}}{3}.$$

The conduction losses are defined by this equation:

$${P}_{conduction}={k}_{c1}{I}_{rms}+{k}_{c2}{I}_{rms}^{2}$$

where:

*k*is the coefficient of the conduction losses that depends on the on-state zero current collector-emitter voltage of the transistor and on the forward voltage drop of the diode. Specify this value by setting the_{c1}**Conduction losses coefficient, kc1**parameter.*k*is the coefficient of the conduction losses that depends on the state resistance of the transistor and on the anti-parallel diode. Specify this value by setting the_{c2}**Conduction losses coefficient, kc2**parameter.

The quiescent losses are defined by the **Fixed power loss**
parameter, *P _{fixed}*.

The sum of the switching, conduction, and quiescent losses define the total power losses of the converter:

$${P}_{loss}={P}_{switching}+{P}_{conduction}+{P}_{fixed}.$$

If not available, you can also obtain the
*k _{s}*,

*k*,

_{c1}*k*and

_{c2}*P*parameters values from the power losses profile, by setting the

_{fixed}**Losses parameterization**parameter to

`Profile: loss=f(Irms,vdc_nom)`

. The block
then solves this equation and calculates the values of the parameters:$$\left[\begin{array}{c}{P}_{1}\\ \vdots \\ {P}_{n}\end{array}\right]=\left[\begin{array}{cccc}1& {v}_{dc\_nom}{I}_{rms,1}& {I}_{rms,1}& {I}_{rms,1}^{2}\\ \vdots & \vdots & \vdots & \vdots \\ 1& {v}_{dc\_nom}{I}_{rms,n}& {I}_{rms,n}& {I}_{rms,n}^{2}\end{array}\right]\left[\begin{array}{c}{P}_{fixed}\\ {k}_{s}\\ {k}_{c1}\\ {k}_{c2}\end{array}\right]$$

where $$\left[\begin{array}{c}{P}_{1}\\ \vdots \\ {P}_{n}\end{array}\right]$$ is the vector of power loss values, **Converter
losses**, corresponding to the **RMS current for converter
losses** parameter, $$\left[\begin{array}{c}{I}_{rms,1}\\ \vdots \\ {I}_{rms,}{}_{n}\end{array}\right]$$, and the **Nominal dc-link voltage**,
*v _{dc_nom}*.

### Model Thermal Effects

This block has one optional thermal port. To control the
visibility of the thermal port, set the **Modeling option** parameter to either:

`No thermal port`

— The block does not contain a thermal port.`Show thermal port`

— The block contains one thermal conserving port.

## Examples

## Ports

### Input

### Conserving

## Parameters

## References

[1] Rajput, M. N.
*Thermal modeling of permanent magnet synchronous motor and
inverter.* 2016.

## Extended Capabilities

## Version History

**Introduced in R2018a**