normcdf
Normal cumulative distribution function
Syntax
Description
Examples
Input Arguments
Output Arguments
More About
Algorithms
The
normcdffunction uses the complementary error functionerfc. The relationship betweennormcdfanderfcisThe complementary error function
erfc(x)is defined asThe
normcdffunction computes confidence bounds forpby using the delta method.normcdf(x,mu,sigma)is equivalent tonormcdf((x–mu)/sigma,0,1). Therefore, thenormcdffunction estimates the variance of(x–mu)/sigmausing the covariance matrix ofmuandsigmaby the delta method, and finds the confidence bounds of(x–mu)/sigmausing the estimates of this variance. Then, the function transforms the bounds to the scale ofp. The computed bounds give approximately the desired confidence level when you estimatemu,sigma, andpCovfrom large samples.
Alternative Functionality
normcdfis a function specific to normal distribution. Statistics and Machine Learning Toolbox™ also offers the generic functioncdf, which supports various probability distributions. To usecdf, create aNormalDistributionprobability distribution object and pass the object as an input argument or specify the probability distribution name and its parameters. Note that the distribution-specific functionnormcdfis faster than the generic functioncdf.Use the Probability Distribution Function app to create an interactive plot of the cumulative distribution function (cdf) or probability density function (pdf) for a probability distribution.
References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964.
[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 1993.
Extended Capabilities
Version History
Introduced before R2006a