# Simplify Symbolic Expression

## Open the Task

To add the **Simplify Symbolic Expression** task to a live
script in the MATLAB Editor:

On the

**Live Editor**tab, select**Task**>**Simplify Symbolic Expression**.In a code block in your script, type a relevant keyword, such as

`simplify`

,`symbolic`

,`rewrite`

,`expand`

, or`combine`

. Select`Simplify Symbolic Expression`

from the suggested command completions.

## Parameters

## Algorithms

When you use `Ignore analytic constraints`

, then the simplification
follows some of these rules:

log(

*a*) + log(*b*) = log(*a*·*b*) for all values of*a*and*b*. In particular, the following equality is valid for all values of*a*,*b*, and*c*:(

*a*·*b*)^{c}=*a*^{c}·*b*^{c}.log(

*a*^{b}) =*b*·log(*a*) for all values of*a*and*b*. In particular, the following equality is valid for all values of*a*,*b*, and*c*:(

*a*^{b})^{c}=*a*^{b·c}.If

*f*and*g*are standard mathematical functions and*f*(*g*(*x*)) =*x*for all small positive numbers,*f*(*g*(*x*)) =*x*is assumed to be valid for all complex values of*x*. In particular:log(

*e*^{x}) =*x*asin(sin(

*x*)) =*x*, acos(cos(*x*)) =*x*, atan(tan(*x*)) =*x*asinh(sinh(

*x*)) =*x*, acosh(cosh(*x*)) =*x*, atanh(tanh(*x*)) =*x*W

_{k}(*x*·*e*^{x}) =*x*for all branch indices*k*of the Lambert W function.

## Version History

**Introduced in R2020a**