acsc
Symbolic inverse cosecant function
Syntax
Description
acsc( returns the inverse cosecant
function (arccosecant function) of X)X. All angles are in radians.
For real values of
Xin intervals[-Inf,-1]and[1,Inf],acscreturns real values in the interval[-pi/2,pi/2].For real values of
Xin the interval[-1,1]and for complex values ofX,acscreturns complex values with the real parts in the interval[-pi/2,pi/2].
Examples
Inverse Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, acsc returns
floating-point or exact symbolic results.
Compute the inverse cosecant function for these numbers. Because these numbers are
not symbolic objects, acsc returns floating-point
results.
A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])
A = -0.5236 + 0.0000i 1.5708 - Infi 1.0472 + 0.0000i 1.5708... - 1.3170i 1.5708 + 0.0000i 0.2014 + 0.0000i
Compute the inverse cosecant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acsc returns
unresolved symbolic calls.
symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))
symA = [ -pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.52359877559829887307710723054658,... Inf,... 1.0471975511965977461542144610932,... 1.5707963267948966192313216916398... - 1.3169578969248165734029498707969i,... 1.5707963267948966192313216916398,... 0.20135792079033079660099758712022]
Plot Inverse Cosecant Function
Plot the inverse cosecant function on the interval from -10 to 10.
syms x fplot(acsc(x),[-10 10]) grid on

Handle Expressions Containing Inverse Cosecant Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
acsc.
Find the first and second derivatives of the inverse cosecant function:
syms x diff(acsc(x), x) diff(acsc(x), x, x)
ans = -1/(x^2*(1 - 1/x^2)^(1/2)) ans = 2/(x^3*(1 - 1/x^2)^(1/2)) + 1/(x^5*(1 - 1/x^2)^(3/2))
Find the indefinite integral of the inverse cosecant function:
int(acsc(x), x)
ans = x*asin(1/x) + log(x + (x^2 - 1)^(1/2))*sign(x)
Find the Taylor series expansion of acsc(x) around x =
Inf:
taylor(acsc(x), x, Inf)
ans = 1/x + 1/(6*x^3) + 3/(40*x^5)
Rewrite the inverse cosecant function in terms of the natural logarithm:
rewrite(acsc(x), 'log')
ans = -log(1i/x + (1 - 1/x^2)^(1/2))*1i
Input Arguments
Version History
Introduced before R2006a