coshint
Hyperbolic cosine integral function
Syntax
Description
coshint( returns the hyperbolic cosine integral
function of X)X.
Examples
Hyperbolic Cosine Integral Function for Numeric and Symbolic Arguments
Depending on its arguments, coshint returns
floating-point or exact symbolic results.
Compute the hyperbolic cosine integral function for these numbers. Because these numbers
are not symbolic objects, coshint returns floating-point
results.
A = coshint([-1, 0, 1/2, 1, pi/2, pi])
A = 0.8379 + 3.1416i -Inf + 0.0000i -0.0528 + 0.0000i 0.8379... + 0.0000i 1.7127 + 0.0000i 5.4587 + 0.0000i
Compute the hyperbolic cosine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coshint returns unresolved
symbolic calls.
symA = coshint(sym([-1, 0, 1/2, 1, pi/2, pi]))
symA = [ coshint(1) + pi*1i, -Inf, coshint(1/2), coshint(1), coshint(pi/2), coshint(pi)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 0.83786694098020824089467857943576... + 3.1415926535897932384626433832795i,... -Inf,... -0.052776844956493615913136063326141,... 0.83786694098020824089467857943576,... 1.7126607364844281079951569897796,... 5.4587340442160681980014878977798]
Plot Hyperbolic Cosine Integral Function
Plot the hyperbolic cosine integral function on the interval from 0 to 2*pi.
syms x fplot(coshint(x),[0 2*pi]) grid on

Handle Expressions Containing Hyperbolic Cosine Integral Function
Many functions, such as diff and
int, can handle expressions containing
coshint.
Find the first and second derivatives of the hyperbolic cosine integral function:
syms x diff(coshint(x), x) diff(coshint(x), x, x)
ans = cosh(x)/x ans = sinh(x)/x - cosh(x)/x^2
Find the indefinite integral of the hyperbolic cosine integral function:
int(coshint(x), x)
ans = x*coshint(x) - sinh(x)
Input Arguments
More About
References
[1] Cautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a