laguerreL
Generalized Laguerre Function and Laguerre Polynomials
Description
laguerreL(
                returns the Laguerre polynomial of degree n,x)n if
                    n is a nonnegative integer. When n is
                not a nonnegative integer, laguerreL returns the Laguerre
                function. For details, see Generalized Laguerre Function.
Examples
Find Laguerre Polynomials for Numeric and Symbolic Inputs
Find the Laguerre polynomial of degree 3
                    for input 4.3.
laguerreL(3,4.3)
ans =
    2.5838Find the Laguerre polynomial for symbolic inputs. Specify degree
                    n as 3 to return the explicit form of
                the polynomial.
syms x laguerreL(3,x)
ans = - x^3/6 + (3*x^2)/2 - 3*x + 1
If the degree of the Laguerre polynomial n is not specified,
                    laguerreL cannot find the polynomial. When
                    laguerreL cannot find the polynomial, it returns the
                function call.
syms n x laguerreL(n,x)
ans = laguerreL(n, x)
Find Generalized Laguerre Polynomial
Find the explicit form of the generalized Laguerre polynomial
                        L(n,a,x) of degree n = 2.
syms a x laguerreL(2,a,x)
ans = (3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1
Return Generalized Laguerre Function
When n is not a nonnegative integer,
                        laguerreL(n,a,x) returns the generalized Laguerre
                    function. 
laguerreL(-2.7,3,2)
ans =
    0.2488laguerreL is not defined for certain inputs and returns an
                error.
syms x
laguerreL(-5/2, -3/2, x)Error using symengine Function 'laguerreL' not supported for parameter values '-5/2' and '-3/2'.
Find Laguerre Polynomial with Vector and Matrix Inputs
Find the Laguerre polynomials of degrees 1
                    and 2 by setting n = [1 2].
syms x laguerreL([1 2],x)
ans = [ 1 - x, x^2/2 - 2*x + 1]
laguerreL acts element-wise on n to return
                a vector with two elements.
If multiple inputs are specified as a vector, matrix, or multidimensional array,
                the inputs must be the same size. Find the generalized Laguerre polynomials where
                input arguments n and x are
                matrices.
syms a n = [2 3; 1 2]; xM = [x^2 11/7; -3.2 -x]; laguerreL(n,a,xM)
ans =
[ a^2/2 - a*x^2 + (3*a)/2 + x^4/2 - 2*x^2 + 1,...
      a^3/6 + (3*a^2)/14 - (253*a)/294 - 676/1029]
[                                    a + 21/5,...
          a^2/2 + a*x + (3*a)/2 + x^2/2 + 2*x + 1]laguerreL acts element-wise on n and
                    x to return a matrix of the same size as n
                and x.
Differentiate and Find Limits of Laguerre Polynomials
Use limit to find the limit of a
                    generalized Laguerre polynomial of degree 3 as
                        x tends to ∞.
syms x expr = laguerreL(3,2,x); limit(expr,x,Inf)
ans = -Inf
Use diff to find the third derivative of the generalized
                Laguerre polynomial laguerreL(n,a,x).
syms n a expr = laguerreL(n,a,x); diff(expr,x,3)
ans = -laguerreL(n - 3, a + 3, x)
Find Taylor Series Expansion of Laguerre Polynomials
Use taylor to find the Taylor series
                    expansion of the generalized Laguerre polynomial of degree 2
                    at x = 0.
syms a x expr = laguerreL(2,a,x); taylor(expr,x)
ans = (3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1
Plot Laguerre Polynomials
Plot the Laguerre polynomials of orders 1 through 4.
syms x fplot(laguerreL(1:4,x)) axis([-2 10 -10 10]) grid on ylabel('L_n(x)') title('Laguerre polynomials of orders 1 through 4') legend('1','2','3','4','Location','best')

Input Arguments
More About
Algorithms
- The generalized Laguerre function is not defined for all values of parameters - nand- abecause certain restrictions on the parameters exist in the definition of the hypergeometric functions. If the generalized Laguerre function is not defined for a particular pair of- nand- a, the- laguerreLfunction returns an error message. See Return Generalized Laguerre Function.
- The calls - laguerreL(n,x)and- laguerreL(n,0,x)are equivalent.
- If - nis a nonnegative integer, the- laguerreLfunction returns the explicit form of the corresponding Laguerre polynomial.
- The special values are implemented for arbitrary values of - nand- a.
- If - nis a negative integer and- ais a numerical noninteger value satisfying a ≥ -n, then- laguerreLreturns- 0.
- If - nis a negative integer and- ais an integer satisfying a < -n, the function returns an explicit expression defined by the reflection rule
- If all arguments are numerical and at least one argument is a floating-point number, then - laguerreL(x)returns a floating-point number. For all other arguments,- laguerreL(n,a,x)returns a symbolic function call.
Version History
Introduced in R2014b
See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP | legendreP