# ne

Laurent polynomials inequality test

## Syntax

``tf = ne(A,B)``
``tf = (A ~= B)``

## Description

example

````tf = ne(A,B)` compares Laurent polynomials `A` and `B` and returns `1` (`true`) if the two are unequal and `0` (`false`) otherwise. ```
````tf = (A ~= B)` is equivalent to ```tf = ne(A,B)```.```

## Examples

collapse all

Create two Laurent polynomials:

• $a\left(z\right)=2{z}^{3}-3{z}^{2}+4z-5$

• $b\left(z\right)=4{z}^{3}-6{z}^{2}+8z$

```a = laurentPolynomial(Coefficients=[2 -3 4 -5],MaxOrder=3); b = laurentPolynomial(Coefficients=[4 -6 8],MaxOrder=3);```

Confirm $a\left(z\right)$ and $b\left(z\right)$ are not equal.

`a ~= b`
```ans = logical 1 ```

Confirm $2a\left(z\right)+10$ and $b\left(z\right)$ are equal.

```c = rescale(a,2)+10; eq(c,b)```
```ans = logical 1 ```

## Input Arguments

collapse all

Laurent polynomial, specified as a `laurentPolynomial` object.

Laurent polynomial, specified as a `laurentPolynomial` object.

## Output Arguments

collapse all

Inequality test result, returned as a numeric or logical `1` (`true`) or `0` (`false`).

## Version History

Introduced in R2021b