Initial conditions on ODE45 ?
46 views (last 30 days)
Show older comments
Im trying to solve this IVP: e^y +(t*e^y - sin(y))*(dy/dt)=0 with the initial condition y(2)=1.5.
I was just not sure how to do it with the initial condition with Y(2)=1.5, iknow how to do it if it were y(0)=1.5:
f= @(t,y) (exp(y)+(t.*exp(y)-sin(y))); % This is the function.
[t,y]=ode45(f, [0.5,4], 1.5); % trange is from 0.5 to 4
plot(t,y)
can someone please help me out?
0 Comments
Accepted Answer
Jan
on 30 Jul 2011
This uses the initial value y(0.5)=1.5 ( not y(0)=1.5):
[t, y] = ode45(f, [0.5, 4], 1.5);
So for y(2)=1.5:
[t, y] = ode45(f, [2, 4], 1.5);
Note: The initial value problem starts at the inital point.
[EDITED]: The call to ODE45 is equivalent, if the problem is formulated in backward direction - an "final value problem": tspan is still [ti, tf], but now ti > tf.
9 Comments
Pasindu Ranasinghe
on 22 Jul 2021
Example Code
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/692809/image.png)
Use ode45() to find the approximate values of the solution at t in the range of 1 to 3
function ydot = eqns(t,y)
ydot=(t-exp(-t))/(y+exp(y));
end
###################################
%%Code
[t1,y1]=ode45(@eqns,[1.5 1], 0.5);
hold on;
[t2,y2]=ode45(@eqns,[1.5 3], 0.5);
hold off
t=[t1;t2];
y=[y1;y2];
plot(t,y,'-o')
More Answers (1)
Subha Fernando
on 26 Oct 2011
let say function is dy/dt = y (t-y).
If initial condition is given at y(1) = 0.5 not at y(0) then we define the RHS as
function output = funcRHS(t, y) output = y *(t-y); end
%then u can call
hold on ode45('funcRHS', [1, -1], 0.5) ode45('funcRHS', [1,5], 0.5)
%Here you can see and read the initial value at y(0) also
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!