How to apply bat algorithm to spring design problem?
1 view (last 30 days)
Show older comments
This is what I did:
%[5 20 1 0]
% Main programs starts here
function [best,fmin,N_iter]=bat_algorithm_spring1(para)
format long;
% Lb=[0.05 0.25 2.0]; Ub=[1.0 1.3 15.0];
% Default parameters
n=para(1) ; % Population size, typically 10 to 40
N_gen=para(2); % Number of generations
A=para(3) ; % Loudness (constant or decreasing)
r=para(4) ; % Pulse rate (constant or decreasing)
% This frequency range determines the scalings
% You should change these values if necessary
Qmin=0.0025; % Frequency minimum
Qmax=88.4 ; % Frequency maximum
% Iteration parameters
N_iter=0 ; % Total number of function evaluations
% Dimension of the search variables
d=3 ; % Number of dimensions
% Lower limit/bounds/ a vector
Lb=0.0025*ones(1,d);
% Upper limit/bounds/ a vector
Ub=88.4*ones(1,d);
% Initializing arrays
Q=zeros(n,1) ; % Frequency
v=zeros(n,d) ; % Velocities
% Initialize the population/solutions
for i=1:n,
Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
Fitness(i)=objfun(Sol(i,:));
end
% Find the initial best solution
[fmin,I]=min(Fitness);
best=[0.09 0.35 11];
% Start the iterations -- Bat Algorithm (essential part) %
for t=1:N_gen,
% Loop over all bats/solutions
for i=1:n,
Q(i)=Qmin+(Qmax-Qmin)*rand;
v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i);
S(i,:)=Sol(i,:)+v(i,:);
% Apply simple bounds/limits
%Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub);
% Pulse rate
if rand>r
% The factor 0.001 limits the step sizes of random walks
S(i,:)=best+0.001*randn(1,d);
end
% Evaluate new solutions
Fnew=objfun(S(i,:));
% Update if the solution improves, or not too loud
if (Fnew<=Fitness(i)) & (rand<A) ,
Sol(i,:)=S(i,:);
Fitness(i)=Fnew;
% A=0.025*A;
%r=r*(1-exp(-1*t));
end
% Update the current best solution
if Fnew<=fmin,
best=S(i,:);
fmin=Fnew;
end
end
N_iter=N_iter+n;
end
% Output/display
disp(['Number of evaluations: ',num2str(N_iter)]);
disp(['Best =',num2str(best),' fmin=',num2str(fmin)]);
% Application of simple limits/bounds
function s=simplebounds(s,Lb,Ub)
% Apply the lower bound vector
ns_tmp=s;
I=ns_tmp<Lb;
ns_tmp(I)=Lb(I);
% Apply the upper bound vector
J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
%Update this new move
s=ns_tmp;
% Objective function
function f=objfun(x)
f=(2+x(3))*(x(1)^2)*x(2);
% Nonlinear constraints
function [g,geq]=nonfun(x)
% Inequality constraints
g(1)=1-(((x(2)^3)*(x(3)))/(71785*(x(1)^4)));
% Notice the typo 7178 (instead of 71785)
gtmp=((4*(x(2))^2)-(x(1)*x(2)))/(12566*(x(2)*(x(1)^3)-(x(1)^4)));
g(2)=gtmp+(1/(5108*(x(1)^2)))-1;
g(3)=1-((140.45*x(1))/((x(2)^2)*x(3)));
g(4)=((x(1)+x(2))/1.5)-1;
% Equality constraints [none]
geq=[]
This converges lower than the real value. What could be wrong?
Answers (1)
Joe Ajay
on 8 Feb 2015
Hi, am too working on that; got the same problem here. Got any answers?
0 Comments
See Also
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!