Fitting a sin function to a sparse dataset with a known parameter.

6 views (last 30 days)
Question #4 in the last few days... Thank you all for the help so far!
I have a sparse dataset (4 points, soon 5) of an environmental variable whose concentration changes as a function of time of year, and whose shape I know approximates a sin wave, i.e.
var(t) = a1 * (sin(2*pi/365days)*t+b1)+c1
I know the frequency of the function, but I don't know the amplitude (a1), phase offset (b1) or offset in y (c1), so I'd like to fit a sin function to it.
Question: Is there a function that will allow me to specify a given known parameter (frequency) and that will solve for the remaining unknowns (amp, phase, y offset)? I've tried using cftool, but as far as I can tell, it doesn't allow me to specify frequency. And I've started to try to use the fit function, but I'm having a hard time sorting out how to format my input variables.
TIA, Jonathan

Accepted Answer

Dr. Seis
Dr. Seis on 10 Oct 2011
Having only a few data points to work with is a little worrisome, but something like this may work:
function estimates = fitsinewave(xdata, ydata, start_point)
% Call fminsearch with a starting point.
model = @sinefun;
options = optimset('MaxFunEvals',3000);
estimates = fminsearch(model, start_point, options);
% sinefun accepts curve parameters as inputs, and outputs sse,
% the sum of squares error for A*sin(2*pi/365*xdata-B)+C-ydata.
function sse = sinefun(params)
A = params(1);
B = params(2);
C = params(3);
ErrorVector = A*sin(2*pi/365*xdata-B)+C - ydata;
sse = sum(ErrorVector .^ 2);
return
end
return
end
Here is an example to test it out:
A = 3;
B = 3*pi/4;
C = -1.5;
xdata = sort(rand(1,5)*365);
ydata = A*sin(2*pi/365*xdata-B)+C;
start_point = [0, 0, 0]; % Zeros unless you have a good guess for A, B, and C
ABCestimates = fitsinewave(xdata, ydata, starting_point)
ABCestimates =
3.0001 2.3562 -1.5000
  2 Comments
Jonathan
Jonathan on 16 Oct 2011
Thank you Elige for putting this together for me, and sorry that I didn't thank you earlier. My first shot at using it vastly overestimated the amplitude, but I think I can work with a few things and improve it.
Thanks,
Jonathan
Dr. Seis
Dr. Seis on 17 Oct 2011
That stinks!
Can you share a set of your points so I can look into it as well?

Sign in to comment.

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!