Sound absorption coefficient of membrane backed with air cavity
1 view (last 30 days)
Show older comments
0 Comments
Accepted Answer
VBBV
on 17 Jan 2023
Edited: VBBV
on 17 Jan 2023
clc
clear all;
f= (100:2:1600);
omega= 2*pi*f;
rho_s=0.265;
T=76.53*(1+1j*0.005);
D=0.1;
a=0.05; % Fig 2 a
c=343;
rho_0=1.213;
Z_0 = rho_0*c;
k0=omega/c;
km=omega.*sqrt(rho_s/T);
%% Impedance of membrane with air cavity only
% Z_m = (1j*omega*rho_s)./(1-((2./km*a).*(besselj(1, km*a)./besselj(0,km*a))));
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a))));
Z_w = -1j*Z_0*cot(k0*D);
Z_s = Z_m + Z_w;
Z_s = Z_s/Z_0;
R = (Z_s - 1)./(Z_s + 1);
alpha_1 = 1 - ((abs(R)).^2);
figure(1)
set(gca,'FontSize',16)
plot(f,alpha_1); % check using semilogx
%xticklabels(xL)
xlabel('Frequency (Hz)')
ylabel('Sound absorption coefficient')
grid on
grid minor
ylim([0 1])
set(gca, 'XScale', 'log')
The plot was drawn using the below equation
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a)))); % Eq (3) where he writes as it
% can also be written as,
and not with equation you used. Convert the log representation of xlabels using xticklabels
3 Comments
More Answers (0)
See Also
Categories
Find more on Partial Differential Equation Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!