Tolerance of ODE15s becomes too small
3 views (last 30 days)
Show older comments
I want to solve the equations:
with boundary conditions , the initial conditions are .
I decided to solve this using the finite volume method, so that's why I don't need a boundary condition for the specific volume. I am told that this is a "stiff system", hence I am using ode15s. Do I need to fiddle with the ode15s options to get this thing to work?
%this code solves the following system of equations:
%v_t=u_h
%u_t=(zeta/v*u_h)_h
%dX/dt=u
%h is defined by h_x=1/v, and X is the new position of the interfacial
%points
%The boundary conditions for u is u(t,0)=0, u_h(t,1)=-v(t,1)
%The BC's for v, can be derived from ones on u.
%here u is the velocity, and v is the specific volume defined as 1/rho, where rho is the density
%The system is in conservative form, and the finite volume method is the best method for these types of equations
clear;clc;
S=struct;
%---define physical constants
N=200; %This is the number of cells in the simulation
S.N=N;
S.alpha=0;
c_p=1; %heat capacity.
rho_half(1:N)=0.8; %This is the initial density
eta_0=80;
S.eta=eta_0;
S.nu_m_int=zeros(N+1,1);
%---Set up geometry
x=linspace(0,1,N+1); %Initial spacing of the cell interfaces and ends.
dx=x(2); %initial lengths of cells
L(1)=1; %Initial length
%---The solution of the system will be done via Newton-Raphson. The two
%variables v and u will be put into one vector y=[v u]'
nu(1,:)=1./rho_half; %Initial specific volume
%This interpolates the density from the cell centres to cell boundaries.
rho_0(2:N)=0.5*(rho_half(1,N-1)+rho_half(2:N));
rho_0(1)=1.5*rho_half(1)-0.5*rho_half(2);
rho_0(N+1)=1.5*rho_half(N)-0.5*rho_half(N-1);
h=cumtrapz(x,rho_0); %calculates h, which is used throughout the timesteps.
nu_m(1:N)=1; %This is the matal powder density, the maximum possible density.
S.nu_m=nu_m;
dh=diff(h); %This is used to approximate the derivative
S.dh=dh;
S.h=h;
IC=zeros(2*N,1);
IC(1:N)=nu(1,:)';
%tspan = [0 5];
tspan = [0 1.8];
[t,y] = ode15s(@(t,y) sintering_RHS(y,S),tspan,IC);
figure(1)
plot(t,y(:,180))
figure(2)
plot(t,y(:,380))
function y=flux(u,nu,S)
%This computes the fluxes required for the finite volume method
N=S.N;
dh=S.dh;
k=40;
a=1;
nu_face=0.5*(nu(1:N-1)+nu(2:N)); %This is specific volume on the cell interface
nu_L=1.5*nu(2)-0.5*nu(2);
nu_m=S.nu_m;
nu_m_int=S.nu_m_int;
nu_m_int(2:N)=0.5*(nu_m(1:N-1)+nu_m(2:N));
nu_m_int(N+1)=1.5*nu_m(N)-0.5*nu_m(N-1);
nu_m_int(1)=1.5*nu_m(1)-0.5*nu_m(2);
nu_end=1.5*nu(N)-0.5*nu(N-1);
y=zeros(2,N+1); %This vector will store the fluxes for the mass and momentum
y(1,2:N)=0.5*(u(2:N)+u(1:N-1)); %Fluxes for the mass
y(1,N+1)=u(N)-0.5*k*nu_end*dh(N);
y(2,2:N)=P_L(a,nu_face,nu_m_int(2:N))+(2*zeta(nu_face,nu_m_int(2:N),S)'./nu_face').*((u(2:N)'-u(1:N-1)')./(dh(2:N)+dh(1:N-1))); %The flux for the momentum equation
y(2,1)=P_L(a,nu_L,nu_m_int(1))+(zeta(nu_end,nu_m_int(1),S)/nu_end)*u(1); %the fluxes at the end
y(2,N+1)=-zeta(nu_end,nu_m_int(N+1),S);
end
function y=P_L(a,nu,nu_0) %This is the laplace pressure
x=1-nu_0./nu; %This is the porosity for an imcompressible metal powder
y=a*(1-x').^2;
end
function y=zeta(z,nu_0,S)
eta_0=S.eta;
x=1-nu_0./z;
y = 2*(1-x).^3*eta_0./(3*x);
end
function f=sintering_RHS(y,S)
%the vector f has the stencil for each cell for both the mass and momentum
N=floor(length(y)/2);
f=zeros(1,2*N);
flux_1=flux(y(N+1:2*N),y(1:N),S); %This is flux at timestep i
f_mass=flux_1(1,:);
f_mom=flux_1(2,:);
f(1:N)=f_mass(2:N+1)-f_mass(1:N); %These are the stencils coming from the system of equations
f(N+1:2*N)=f_mom(2:N+1)-f_mom(1:N);
f=f';
end
13 Comments
Torsten
on 13 Feb 2024
Edited: Torsten
on 13 Feb 2024
As far as I know, the book only treats scheme for hyperbolic systems of the form
du/dt + d(f(u))/dx = s(u,x,t)
I can't remember having seen schemes for 2nd order PDEs.
Your system is really special - a mixture of first and second order PDEs. I don't know either how to discretize it appropriately.
Answers (0)
See Also
Categories
Find more on Partial Differential Equation Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!