1.124021  5.5  9.875979  0  0  0.376189
    1.717474  5.833333  9.949193  0  2.0e-06  0.406269
    2.310404  6.166667  10.022929  0  9.0e-06  0.437133
    2.902698  6.5  10.097302  0  4.3e-05  0.468657
    3.494207  6.833333  10.17246  0  0.000177  0.500713
    4.084734  7.166667  10.248599  0  0.000652  0.533182
    4.477745  7.388889  10.300033  0  0.001455  0.555004
    5.065991  7.722222  10.378454  0  0.004391  0.587936
    5.457105  7.944444  10.431784  0  0.008595  0.609998
    5.847164  8.166667  10.486169  2.0e-06  0.015984  0.632136
    6.235924  8.388889  10.541854  1.3e-05  0.028261  0.654357
    6.490555  8.534934  10.57931  4.1e-05  0.040  0.669016
    6.808555  8.717996  10.62744  0.00016  0.060  0.687473
    7.008118  8.833333  10.658548  0.000356  0.076166  0.699163
    7.199693  8.944444  10.689196  0.000737  0.094688  0.710483
    7.390505  9.055556  10.720606  0.001463  0.116333  0.721871
    7.571342  9.161331  10.75132  0.002702  0.14  0.732792
    7.707905  9.24156  10.77522  0.004197  0.16  0.741136
    7.833186  9.315465  10.79775  0.00618  0.18  0.748878
    7.957108  9.388889  10.82067  0.008916  0.201356  0.756628
    8.110717  9.480406  10.85009  0.013738  0.23  0.766383
    8.211082  9.540542  10.87  0.017985  0.25  0.772858
    8.328215  9.611111  10.894008  0.02431  0.274598  0.78053
    8.443105  9.680786  10.91847  0.032232  0.30  0.788191
    8.529915  9.733769  10.93762  0.039539  0.32  0.79408
    8.655085  9.810744  10.9664  0.052391  0.35  0.802743
    8.735663  9.860704  10.98575  0.062285  0.37  0.80844
    8.852923  9.934061  11.0152  0.079214  0.40  0.816918
    8.92903  9.98214  11.03525  0.091936  0.42  0.822553
    9.040583  10.053372  11.06616  0.113227  0.45  0.831024
    9.113456  10.100458  11.08746  0.128911  0.47  0.836707
    9.214635  10.166667  11.118699  0.153089  0.498239  0.844815
    9.29143  10.217655  11.14388  0.17333  0.52  0.851154
    9.380601  10.277778  11.174955  0.198872  0.545578  0.858735
    9.464812  10.335597  11.20638  0.224964  0.57  0.86613
    9.540967  10.388889  11.236811  0.250145  0.592277  0.873034
    9.63501  10.456235  11.27746  0.28319  0.62  0.881863
    9.702443  10.505738  11.30903  0.308107  0.64  0.888415
    9.803071  10.58185  11.36063  0.346963  0.67  0.898554
    9.869875  10.634118  11.39836  0.373712  0.69  0.905533
    9.969753  10.715403  11.46105  0.414825  0.72  0.916335
    10.03617  10.771939  11.50771  0.442722  0.74  0.923751
    10.105323  10.833333  11.561344  0.472071  0.760853  0.931646
    10.201916  10.924318  11.64672  0.513286  0.79  0.942893
    10.268263  10.991105  11.71395  0.54154  0.81  0.95068
    10.334807  11.062372  11.78994  0.569668  0.83  0.958435
    10.42447  11.166667  11.908864  0.606991  0.856739  0.968563
    10.50379  11.268709  12.03363  0.63922  0.88  0.976902
    10.57386  11.368284  12.16271  0.666898  0.90  0.983486
    10.647043  11.483703  12.32036  0.694863  0.92  0.989289
    10.719233  11.611111  12.502989  0.721378  0.938393  0.993718
    10.776016  11.722222  12.668428  0.741413  0.951576  0.996241
    10.869256  11.928222  12.98719  0.772617  0.97  0.998711
    10.933957  12.089833  13.24571  0.79296  0.98  0.9995
    11.025138  12.344552  13.66397  0.819725  0.99  0.999907
    11.100291  12.577669  14.05505  0.84007  0.995  0.999984
    11.176368  12.833333  14.490299  0.859073  0.99781  0.999998
    11.239341  13.058332  14.87732  0.873596  0.999  1
    11.327018  13.388889  15.45076  0.892028  0.999713  1
    11.41125  13.722222  16.033194  0.907834  0.999928  1
    11.492504  14.055556  16.618607  0.921391  0.999984  1
    11.57158  14.388889  17.206198  0.933078  0.999997  1
    11.649017  14.722222  17.795427  0.943174  0.999999  1
    11.725194  15.055556  18.385917  0.951895  1  1
    11.800381  15.388889  18.977397  0.959419  1  1
    11.874778  15.722222  19.569666  0.965894  1  1
    11.948534  16.055556  20.162577  0.971449  1  1
    12.021764  16.388889  20.756014  0.976199  1  1  ];
xWT = [5.5,16.5,11,13.8,10.1,14.7,10.4,11.7,9.7,7.3,7.8,8.1,12.2,8.5,11.8,11.7121,11.4083,11.1558,12.4633,12.2761,12.1107,11.9628,11.8291,11.7072,11.5952,11.4917,11.3955,11.3057,11.2214,11.1421]';
yWT = [0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1]';
[b, dev, stats] = glmfit(xWT, [yWT, n], 'binomial', 'Link', 'probit');
[y_fit, dylo, dyhi] = glmval(b, wt, 'probit', stats, 'confidence', 0.95);
gradient = central_diff(y_fit, wt);
    plot(xWT(go), yWT(go), 'ko', 'LineWidth', 0.5, 'MarkerFaceColor', 'g', 'MarkerSize', 8)
    plot(xWT(nogo), yWT(nogo), 'ks', 'LineWidth', 0.5, 'MarkerFaceColor', 'r', 'MarkerSize', 8)
    p1 = plot(wt, y_fit, '-m');
    p2 = plot(wt, y_fit - dylo, '-k');
    plot(wt, y_fit + dyhi, '-k')
    p3 = plot(wt, gradient/max(gradient), '-', 'Color', 0.6*[1,1,1]);
    title('Wu and Tian Example')
    xlabel('Quantile (q, in units wt)')
    ylabel('Probability (p)')
    mfw_pos = get(gcf, 'Position'); mfw_pos(3) = mfw_pos(3) * 1.6; set(gcf, 'Position', mfw_pos); 
    p4 = plot(R_output(:,2), R_output(:,6), '--b');
    plot(R_output(:,2), R_output(:,4), '--b')
    p5 = plot(R_output(:,1), R_output(:,5), '--r');
    plot(R_output(:,3), R_output(:,5), '--r')
    legend([p1 p2 p3 p4 p5],{'Logistic Fit','Confidence Bounds from glmval','diff of Logistic Fit','Confidence Interval about p','Confidence Interval about q'}, ...
mdl = fitglm(xWT, yWT, 'Distribution', 'binomial', 'Link', 'probit');
    plot(wt, mdl.Link.Inverse([ones(size(wt',1),1,"like",wt') wt'] * ci(:,1)), '-c', 'DisplayName', 'from Matlab coefCI')
    plot(wt, mdl.Link.Inverse([ones(size(wt',1),1,"like",wt') wt'] * ci(:,2)), '-c', 'HandleVisibility','off')