- Adjust the architecture according to your specific needs. The example provided is a simple convolutional autoencoder.
- Modify the number of layers, filter sizes, and the number of features in the fully connected layer to fit your dataset and desired dimensionality reduction.
- Ensure your data is normalized appropriately before feeding it into the network.
How to train autoencoder on dlarray data for feature extraction?
8 views (last 30 days)
Show older comments
I have a high dimensional time-series dataset with 625 features with around 50000 observations for each feature. I have multiple batches of this dataset arranged in a dlarray format. This results in a 4D matrix. How do I train an autoencoder to reduce the dimensioality of this dataset from original 625 features to a smaller number of variables.
0 Comments
Accepted Answer
Yash Sharma
on 26 Jun 2024
To train an autoencoder for dimensionality reduction on your high-dimensional time-series dataset, you can follow these steps in MATLAB. The dlarray format is useful for handling multi-dimensional arrays, and MATLAB's Deep Learning Toolbox provides tools to work with such data.
Here’s a step-by-step guide:
Step 1: Prepare the Data
Make sure your data is in the correct format. Assuming you have a 4D dlarray where the dimensions are arranged as [features, time, batch, channels].
Step 2: Define the Autoencoder Architecture
Define the architecture of your autoencoder. The encoder part will compress the input data to a lower-dimensional representation, and the decoder part will reconstruct the input data from this lower-dimensional representation.
Step 3: Train the Autoencoder
Use the trainNetwork function to train your autoencoder with the specified architecture and training options.
Here’s an example code snippet to illustrate these steps:
% Assuming your data is in a 4D dlarray format
% data: [features, time, batch, channels]
% Example data dimensions
numFeatures = 625;
numTimeSteps = 50000;
numBatches = 10; % Example number of batches
numChannels = 1; % Example number of channels
% Load your data (replace this with your actual data loading code)
data = randn(numFeatures, numTimeSteps, numBatches, numChannels, 'single');
data = dlarray(data, 'CBTC'); % 'CBTC' stands for 'Channel', 'Batch', 'Time', 'Channel'
% Define the autoencoder architecture
inputSize = [numFeatures, numTimeSteps, numChannels];
% Encoder
encoderLayers = [
imageInputLayer(inputSize, 'Name', 'input', 'Normalization', 'none')
convolution2dLayer([3, 3], 16, 'Padding', 'same', 'Name', 'conv1')
reluLayer('Name', 'relu1')
maxPooling2dLayer([2, 2], 'Stride', [2, 2], 'Name', 'maxpool1')
convolution2dLayer([3, 3], 8, 'Padding', 'same', 'Name', 'conv2')
reluLayer('Name', 'relu2')
fullyConnectedLayer(50, 'Name', 'fc1') % Reduce to 50 features (example)
];
% Decoder
decoderLayers = [
fullyConnectedLayer(prod([numFeatures, numTimeSteps, numChannels]), 'Name', 'fc2')
reluLayer('Name', 'relu3')
transposedConv2dLayer([3, 3], 8, 'Cropping', 'same', 'Name', 'deconv1')
reluLayer('Name', 'relu4')
transposedConv2dLayer([3, 3], 16, 'Cropping', 'same', 'Name', 'deconv2')
reluLayer('Name', 'relu5')
transposedConv2dLayer([3, 3], numChannels, 'Cropping', 'same', 'Name', 'deconv3')
regressionLayer('Name', 'output')
];
% Combine encoder and decoder
layers = [
encoderLayers
decoderLayers
];
% Specify training options
options = trainingOptions('adam', ...
'MaxEpochs', 50, ...
'InitialLearnRate', 1e-3, ...
'MiniBatchSize', 128, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress', ...
'Verbose', false);
% Train the autoencoder
net = trainNetwork(data, data, layers, options);
% Extract the encoder part of the network
encoderNet = layerGraph(net.Layers(1:numel(encoderLayers)));
% Save the trained network
save('autoencoderNet.mat', 'net', 'encoderNet');
Notes:
This approach should help you train an autoencoder to reduce the dimensionality of your high-dimensional time-series dataset.
More Answers (0)
See Also
Categories
Find more on Custom Training Loops in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!