You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
How to implement MultiStart to find a good fit of two curves at the same time with real data such as our curves are governed by an ODE system?
3 views (last 30 days)
Show older comments
% Set up the problem for MultiStart
problem = createOptimProblem('lsqcurvefit','x0',k0,'objective',@simulatedhs,...
'lb',zeros(size(k0)),'xdata',tforward ,'ydata',[Hdata,HSdata] );
ms = MultiStart;
[k,fval,Exitflag,Output,Solutions] = run(ms,problem,50);
simulated_data = simulatedhs(k,tforward);
X=simulated_data(:,1);
Z=simulated_data(:,2);
%plot the result
figure(5)
plot(tforward,Hdata ,tforward,X)
plot(tforward,Hdata,tforward,Y)
legend('Data','Fitted result')
13 Comments
Khadija
on 3 Aug 2024
I followed the instructions cited in the site that you recommended to me, the problem is that for 'ydata' there is a vector, that's why; the execution is not done for my problem and the MultiStart function no longer works!!
Torsten
on 3 Aug 2024
There are problems with ode15s, but MultiStart seems to work in principle. Do you use an older MATLAB version ?
% Données spécifiques
specific_data = [
2009 2 8;
2010 10 22;
2011 30 45;
2012 111 75;
2013 125 96;
2014 255 192;
2015 379 227;
2016 384 238
2017 360 279;
2018 399 229;
2019 235 128
];
% Utilisez les données spécifiques
tdata = specific_data(:, 1);
Hdata = specific_data(:, 2);
HSdata = specific_data(:, 3);
tforward = 2009:1:2019;
%tmeasure = [ 1:100:1001]';
% initial values
gamma = 1.5;
phi_S = 0.0006; % transmission prob
phi_H = 0.000051; % trans proba
c1=3;
c2=1.5;
theta1 = 100; % djustment parameters for syph
theta2 = 4; %djustment parameters for hi
alpha = 0.6; % progression rate
beta = 0.2; %Complications rate
rho1 = 0.4; % adjustment parameters
rho2 = 1.5; % adjustment parameters
rho3 = 1.5; % adjustment parameters
k0 = [phi_S phi_H c1 c2 theta1 theta2 alpha beta rho1 rho2 rho3 ];
% solve equ with initial value of parameters
[t, Y] = ode15s(@(t, y)modelhs(t, y, k0), tforward, [ 5000.0 20.0 2.0 0.0 6.0 2.0 0.0 ],odeset('RelTol',1e-10,'AbsTol',1e-10));
yintM = Y(:,1);
yintS = Y(:,2);
yintH1 = Y(:,3);
yintH2 = Y(:,4);
yintH1S=Y(:,5);
yintH2S=Y(:,6);
Hh=phi_H * ( yintH1 + c1 * yintH1S ).*yintM + rho1 * gamma * yintH1S + alpha* yintH2; % new cases from monoH
HShs=theta1*phi_S * ( yintS + c2 * yintH1S ).*yintH1 + theta2*phi_H * ( yintH1 + c1 * yintH1S ).*yintS+ rho2*alpha*yintH1S; %new case of co h-s
%H2q = Y(:,4);% assignts the y-coordinates of .
% Plotting specific data and solutions
% Display the results
figure(1)
%subplot(1,2,1);
plot(tdata, Hdata, 'r*');
hold on
plot(tdata, Hh, 'b-');
xlabel('time in days');
ylabel('Number of monhiv cases');

%axis([2009 2019 0 500]);
figure(2)
%subplot(1,2,1);
plot(tdata, HSdata, 'r*');
hold on
plot(tdata, HShs, 'b-');
xlabel('time in days');
ylabel('Number of Coinfection cases');

%axis([2009 2019 0 500]);
% Set up the problem for MultiStart
problem = createOptimProblem('lsqcurvefit','x0',k0,'objective',@simulatedhs,...
'lb',zeros(size(k0)),'xdata',tforward ,'ydata',[Hdata,HSdata] );
ms = MultiStart;
[k,fval,Exitflag,Output,Solutions] = run(ms,problem,5);
Warning: Failure at t=2.009000e+03. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.637979e-12) at time t.
Warning: Failure at t=2.009000e+03. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.637979e-12) at time t.
Warning: Failure at t=2.009000e+03. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.637979e-12) at time t.
Warning: Failure at t=2.009000e+03. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.637979e-12) at time t.
MultiStart completed some of the runs from the start points.
1 out of 5 local solver runs converged with a positive local solver exitflag.
simulated_data = simulatedhs(k,tforward);
X=simulated_data(:,1);
Z=simulated_data(:,2);
%plot the result
figure(5)
plot(tforward,Hdata ,tforward,X)

plot(tforward,HSdata,tforward,Z)
legend('Data','Fitted result')

%kstart = k0.*(1+0.01*rand(size(k0))) % Change k by a little amount
%[k,fval] = lsqcurvefit(@simulatedhs,kstart,tforward,[Hh,HShs],zeros(numel(k0),1),[],optimset('MaxFunEvals',10000,'MaxIter',10000));
%k(:)-k0(:)
%simulated_data = simulatedhs(k,tforward);
%H = simulated_data(:,1);
%HS = simulated_data(:,2);
%max(H-Hh)
%max(HS-HShs)
%figure(3)
%plot(tforward.',[H,Hh])
%figure(4)
%plot(tforward.',[HS,HShs])
function dy=modelhs(~,y,k)
delta = 0.01; % Taux de mortalité
delta_S = 0.05; % Taux de mort de Syphilis.
delta_H = 0.4;
Lambda =4.04 *100;
gamma=1.5;
phi_S =k(1);
phi_H =k(2);
c1 = k(3);
c2=k(4) ;
theta1 =k(5) ;
theta2 = k(6);
alpha = k(7);
beta = k(8);
rho1 = k(9);
rho2= k(10);
rho3=k(11);
dy = zeros(7,1);
%lambda_s=phi_S * ( y(2) + c2 * y(5))
%lambda_H= phi_H * ( y(3) + c1 * y(5) )
dy(1) = Lambda + gamma * y(2) - (phi_S * ( y(2) + c2 * y(5)) + phi_H * (y(3) + c1 * y(5)) + delta ) * y(1) ;%M
dy(2)= phi_S * ( y(2) + c2 * y(5) ) * y(1) - ( gamma + theta2 * phi_H * ( y(3) + c1 * y(5) ) + delta_S ) * y(2) ;%S
dy(3) = phi_H * ( y(3) + c1 * y(5) ) * y(1) + rho1 * gamma * y(5) - (theta1 * phi_S * ( y(2) + c2 * y(5)) + delta + delta_H + alpha) * y(3) ;%H1
dy(4) = alpha * y(3) - (beta + delta + delta_H) * y(4) ;%H2
dy(5) = theta2 * phi_H * ( y(3) + c1 * y(5) ) * y(2) + ( theta1 * phi_S * ( y(2) + c2 * y(5) ) ) * y(3) - ( rho1 * gamma + rho2 * alpha + delta_H + delta_S + delta ) * y(5) ;%H1S
dy(6)= rho2 * alpha * y(5) - ( rho3 * beta + delta_S + delta_H + delta ) * y(6) ;%H2S
dy(7)= beta * y(4) + rho3 * beta * y(6) - ( delta + delta_H ) * y(7) ;%C
end
function simulated_data = simulatedhs(k,tdata)
% Données spécifiques
specific_data = [
2009 2 8;
2010 10 22;
2011 30 45;
2012 111 75;
2013 125 96;
2014 255 192;
2015 379 227;
2016 384 238
2017 360 279;
2018 399 229;
2019 235 128
];
gamma = 1.5;
phi_S =k(1);
phi_H =k(2);
c1 = k(3);
c2=k(4) ;
theta1 =k(5) ;
theta2 = k(6);
alpha = k(7);
beta = k(8);
rho1 = k(9);
rho2= k(10);
rho3=k(11);
[T, Y] = ode15s(@(t,y)modelhs(t,y,k),tdata,[ 5000.0 20.0 2.0 0.0 6.0 2.0 0.0 ],odeset('RelTol',1e-10,'AbsTol',1e-10));
M = Y(:,1);
S = Y(:,2);
H1 = Y(:,3);
H2 = Y(:,4);
H1S=Y(:,5);
H2S=Y(:,6);
H=phi_H * ( H1 + c1 * H1S ).*M + rho1 * gamma*H1S + alpha* H2; % new cases from mono-HIV
HS=theta1*phi_S * ( S + c2 * H1S ).*H1 + theta2*phi_H * ( H1 + c1 * H1S ).*S+ rho2*alpha*H1S; %new case of coinfection hiv+syphilis
simulated_data = [H,HS];
end
Khadija
on 3 Aug 2024
when i'am running the code, this message appears:
MultiStart stopped without completing the runs from all start points.
1 out of 5 local solver runs exceeded the
iteration limit (problem.options.MaxIterations) or
the function evaluation limit (problem.options.MaxFunctionEvaluations).
None of the 5 local solver runs converged with a positive local solver exitflag.
>>
Torsten
on 3 Aug 2024
Edited: Torsten
on 3 Aug 2024
This can happen. Either "ode15s" or "lsqcurvefit" didn't converge for the initial value vectors k chosen by "MultiStart".
You should control the parameter vectors being chosen by "MultiStart" so that they don't become nonsense:
But as said: An ODE model with 11 free parameters and the only restriction that they are all positive is a challenge. And keep in mind that you only have 11 (ok: 22) data to fit 11 parameters - these are far too few.
Khadija
on 3 Aug 2024
At the moment, I feel really lost!!
Is the problem due to the two data vectors (11*1,11*1)?
Walter Roberson
on 3 Aug 2024
You should increase the iteration limit
opts = optimoptions('lsqcurvefit', 'MaxIterations', 1e5, 'MaxFunctionEvaluations', 1e5);
problem = createOptimProblem('lsqcurvefit','x0',k0,'objective',@simulatedhs,...
'lb',zeros(size(k0)),'xdata',tforward ,'ydata',[Hdata,HSdata], ...
'options', opts);
Torsten
on 3 Aug 2024
Edited: Torsten
on 3 Aug 2024
Is the problem due to the two data vectors (11*1,11*1)?
No. The problem is due to 11 free parameters that can attain any positive value according to your settings, the fact that the simulated data come from a system of complicated ordinary differential equaltions and the fact that you supply far too few data for the fitting process. Isn't it possible to reduce the number of fitting parameters and to restrict them to certain lower and upper bounds via the arrays lb and ub ?
Khadija
on 3 Aug 2024
I have eliminated three parameters that I will fix later. I have added the lower bound; but for the upper bound I cannot put it only to the three of these parameters, do I have to decompose my parameter vector into two vectors?
problem = createOptimProblem('lsqcurvefit','x0',k0,'objective',@simulatedhs, 'lb',[0 0 1 1 0 1 1],'xdata',tforward ,'ydata',[Hdata,HSdata],'options', opts);
Khadija
on 4 Aug 2024
Is there any problem of this ligne?
[k,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat] = lsqcurvefit(@simulatedhs,k0,tforward,[Hdata,HSdata],...
'lb',[0 0 1 1 1 1 0 0 0 1 1],'ub',[1 1 inf inf inf inf 1 1 1 inf inf],...
optimset('MaxFunEvals',10000,'MaxIter',10000));
Torsten
on 4 Aug 2024
lb = [0 0 1 1 1 1 0 0 0 1 1];
ub = [1 1 inf inf inf inf 1 1 1 inf inf];
options = optimset('MaxFunEvals',10000,'MaxIter',10000);
[k,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat] = lsqcurvefit(@simulatedhs,k0,tforward,[Hdata,HSdata],lb,ub,options);
Khadija
on 4 Aug 2024
for now, MultiStart does not give a better result, I have not been able to solve the problem. I keep the estimate without multistart which gives a result close to the suitable one. Thank you again for your patience!!
Answers (0)
See Also
Categories
Find more on Global or Multiple Starting Point Search in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)