Problems in reinforcement learning training
7 views (last 30 days)
Show older comments
The effect of matlab reinforcement learning in the training process is better, but the reason for the poor effect after saving the agent is, or how to save the good effect in the training process
3 Comments
Shantanu Dixit
on 2 Sep 2024
Assuming you're experiencing different training process before and after loading the saved agent, this could be due to following factors:
- Experience Buffer: By default, the experience buffer isn't saved with some agents like DDPG and DQN. If you plan to continue training the saved agent, consider setting 'SaveExperienceBufferWithAgent' to true to preserve the experience buffer.
- Non-Determinism and Exploration Strategy: Training may involve stochastic elements, causing the agent to explore different trajectories after being reloaded, which could result in a different training process.
Additionaly you can refer to 'SaveAgentCriteria' and 'SaveAgentValue' to save agents that meet specific performance criteria.
Refer to the below MathWorks documentation for different saving strategies:
Answers (0)
See Also
Categories
Find more on Training and Simulation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!