how to get global optimum with Multistart?

38 views (last 30 days)
I used lsqcurvfit to give an estimate to the parameters, but certainly the initial condition does not give a good fit, I implemented Multistart, and here is the error that appears:
Error using lsqcurvefit (line 289)
Function value and YDATA sizes are not equal.
Error in globaloptim.multistart.fmultistart
Error in MultiStart/run (line 257)
globaloptim.multistart.fmultistart(problem,startPointSets,msoptions);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Error in rectifModel (line 51)
[k,fval,Exitflag,Output,Solutions] = run(ms,problem,5);
^^^^^^^^^^^^^^^^^
Caused by:
Failure in call to the local solver with supplied problem structure.
>>
  2 Comments
Star Strider
Star Strider on 11 Dec 2024
I do not know what you are doing, so I cannot comment with respect to your code.
This can occur when a differential equation solver encounters a singularity and stops the integration before finishing it, so the data and model vectors do not have the same number of elemenets, or if the model results are the transpose of the data to be fitted, even though the number of elements in the two vectors (or matrices) are the same.
Khadija
Khadija on 11 Dec 2024
Edited: Walter Roberson on 12 Dec 2024
Hi Mr star,
Here is the code I am trying to develop to have a good fit, the implementation of MultiStart will allow me to have a good result for the most part, even if I change the data or the initial condition of my system, please take a look!!
% Données spécifiques
specific_data = [
2009 2 8;
2010 10 22;
2011 30 45;
2012 111 75;
2013 125 96;
2014 255 192;
2015 379 227;
2016 384 238
2017 360 279;
2018 399 229;
2019 235 128
];
% Utilisez les données spécifiques
tdata = specific_data(:, 1);
Hdata = specific_data(:, 2);
HSdata = specific_data(:, 3);
tforward = 2009:0.1:2019;
%tmeasure = [ 1:100:1001]';
% initial values
gamma = 5.642;
alpha = 0.08;% progression rate
%fitted parameters
phi_S =0.0000034;
phi_H = 0.000000028;
c1=3;
c2=1.5;
theta1 =19;
theta2 =10;
beta = 0.6;
rho1 =0.4;
rho2 =1.2;
rho3 = 2;
rho4 =0.3;
rho5 =1.2;
k0 = [phi_S phi_H c1 c2 theta1 theta2 beta rho1 rho2 rho3 rho4 rho5 ];
%kstart = k0.*(1+0.01*rand(size(k0))); % Change k by a little amount
% Set up the problem for MultiStart
problem = createOptimProblem('lsqcurvefit','x0',k0,'objective',@simulatedhs,...
'lb',[0 0 1 1 1 1 0 0 1 1 1 1],'ub',[1 1 inf inf inf inf 1 1 inf inf inf inf],'xdata',tforward ,'ydata',[Hdata,HSdata] );
ms = MultiStart;
[k,fval,Exitflag,Output,Solutions] = run(ms,problem,5);
display(k);
simulated_data = simulatedhs(k,tforward);
H = simulated_data(:,1);
HS = simulated_data(:,2);
figure(1)
plot (tdata.', HSdata,'r*')
hold on
plot(tforward, HS, 'k--','linewidth',2)
legend('H-S coinfection Data', 'Model with fit');
axis([2009 2019 0 1000]);
figure(2)
plot(tforward, H, 'b--','linewidth',2)
hold on
plot (tdata.', Hdata,'ro')
legend('Mono-Hiv Data', 'Model with fit');
axis([2009 2019 0 1000]);
function dy=modelhs(~,y,k)
gamma = 5.642;
alpha = 0.08;
delta = 0.0056773;
delta_S = 4.7889*10^(-8);
delta_H = 9.538*10^(-6);
Lambda =111130.48;
phi_S =k(1);
phi_H =k(2);
c1 = k(3);
c2=k(4) ;
theta1 =k(5) ;
theta2 = k(6);
beta = k(7);
rho1 = k(8);
rho2= k(9);
rho3=k(10);
rho4=k(11);
rho5=k(12);
dy = zeros(7,1);
dy(1) = Lambda + gamma * y(2) - (phi_S * ( y(2) + c2 * y(5)) + phi_H * (y(3) + c1 * y(5)) + delta ) * y(1) ;%M
dy(2)= phi_S * ( y(2) + c2 * y(5) ) * y(1) - ( gamma + theta2 * phi_H * ( y(3) + c1 * y(5) ) + delta_S ) * y(2) ;%S
dy(3) = phi_H * ( y(3) + c1 * y(5) ) * y(1) + rho1 * gamma * y(5) - (theta1 * phi_S * ( y(2) + c2 * y(5)) + delta + delta_H + alpha+rho4*beta) * y(3) ;%H1
dy(4) = alpha * y(3) - (beta + delta + delta_H) * y(4) ;%H2
dy(5) = theta2 * phi_H * ( y(3) + c1 * y(5) ) * y(2) + ( theta1 * phi_S * ( y(2) + c2 * y(5) ) ) * y(3) - ( rho1 * gamma + rho2 * alpha + delta_H + delta_S + delta + rho5*beta) * y(5) ;%H1S
dy(6)= rho2 * alpha * y(5) - ( rho3 * beta + rho1 * gamma + delta_S + delta_H + delta ) * y(6) ;%H2S
dy(7)= rho4 * beta * y(3)+rho5 * beta * y(5)+beta * y(4) + rho3 * beta * y(6) - ( delta + delta_H ) * y(7) ;%C
end
function simulated_data = simulatedhs(k,tdata)
gamma = 5.642;
alpha = 0.08;
delta = 0.0056773;
delta_S = 4.7889*10^(-8);
delta_H = 9.538*10^(-6);
Lambda =111130.48;
phi_S =k(1);
phi_H =k(2);
c1 = k(3);
c2=k(4) ;
theta1 =k(5) ;
theta2 = k(6);
beta = k(7);
rho1 = k(8);
rho2= k(9);
rho3=k(10);
rho4=k(11);
rho5=k(12);
[T, Y] = ode15s(@(t,y)modelhs(t,y,k),tdata,[ 12280000.0 100.0 2.0 0.0 6.0 2.0 0.0 ],odeset('RelTol',1e-10,'AbsTol',1e-10));
%[T, Y] = ode15s(@(t,y)modelhs(t,y,k),tdata,[ 12280000.0 100.0 2.0 0.0 6.0 2.0 0.0 ]);
M = Y(:,1);
S = Y(:,2);
H1 = Y(:,3);
H2 = Y(:,4);
H1S=Y(:,5);
H2S=Y(:,6);
H=phi_H * ( H1 + c1 * H1S ).*M + rho1 * gamma * H1S + alpha.* H2+rho4*beta.* H1;
HS=theta1*phi_S .* ( S + c2 .* H1S ).*H1 + theta2*phi_H .* ( H1 + c1 .* H1S ).*S+ rho2*alpha.*H1S+rho5*beta.*H1S;
simulated_data = [H,HS];
end

Sign in to comment.

Accepted Answer

Walter Roberson
Walter Roberson on 12 Dec 2024
tdata = specific_data(:, 1);
Hdata = specific_data(:, 2);
HSdata = specific_data(:, 3);
tdata is an 11 x 1 column vector formed from the first column of the input. Similarly for HData and HSdata
tforward = 2009:0.1:2019;
That is a 1 x 101 row vector
problem = createOptimProblem('lsqcurvefit','x0',k0,'objective',@simulatedhs,...
'lb',[0 0 1 1 1 1 0 0 1 1 1 1],'ub',[1 1 inf inf inf inf 1 1 inf inf inf inf],'xdata',tforward ,'ydata',[Hdata,HSdata] );
So the lsqcurvefit is to pass in a 1 x 101 vector (tforward) as the xdata. And according to the problem creation, it expects back ydata which is [11 x 1, 11x1] for an overall solution of 11 x 2.
function simulated_data = simulatedhs(k,tdata)
The tdata received here will be the same as xdata -- a 1 x 101 vector.
[T, Y] = ode15s(@(t,y)modelhs(t,y,k),tdata,[ 12280000.0 100.0 2.0 0.0 6.0 2.0 0.0 ],odeset('RelTol',1e-10,'AbsTol',1e-10));
The tdata gets passed to ode15s as time data. It is a vector with length greater than 2, so the output of ode15s will normally have length(tdata) time entries (unless ode15s aborts early.)
M = Y(:,1);
S = Y(:,2);
H1 = Y(:,3);
H2 = Y(:,4);
H1S=Y(:,5);
H2S=Y(:,6);
Those will each be length(tdata) x 1.
H=phi_H * ( H1 + c1 * H1S ).*M + rho1 * gamma * H1S + alpha.* H2+rho4*beta.* H1;
HS=theta1*phi_S .* ( S + c2 .* H1S ).*H1 + theta2*phi_H .* ( H1 + c1 .* H1S ).*S+ rho2*alpha.*H1S+rho5*beta.*H1S;
H and HS are calculated in terms of length(tdata) x 1 vectors, so they will each be length(tdata) x 1 results.
simulated_data = [H,HS];
so simulated_data will be length(tdata) x 2.
But this does not match ydata, which is 11 x 2.
The fix is to use 'xdata', tdata and get rid of tforward
  16 Comments
Khadija
Khadija on 21 Dec 2024 at 17:57
Hi,
i hope you are well, i am still struggling!!
i am still struggling to find a good fit.
i followed your advice Mr. Torsten, i reduced the number of parameters. As a result, my curve is close to the experimental data than before. I am looking for a good improvement of the fit. for a good visualization of the fit.
To minimize "fval", can genetic algorithm be a good approach to solve my problem?
Walter Roberson
Walter Roberson on 21 Dec 2024 at 19:10
You can always try genetic algorithm.
My personal experience is that ga() does not work especially well on most curve fitting tasks

Sign in to comment.

More Answers (0)

Categories

Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange

Products


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!