Undefined function 'VAD' for input arguments of type 'double'.

1 view (last 30 days)
I have use following downloaded code for convert speech to text.
% % traning phase
clc; clear;close all
w = warning ('off','all');
Fs=8000;
% % For the word "ONE"
filepart1='myrecordone';
filepart2='.wav';
% % check for signal length
% % we will append zeros after VAD to make sure all the signals are of
% % equal length
% % We need same number of MFCC of each signal
length_all_sig=[];
for i=1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
length_all_sig=[length_all_sig length(filt_signal)];
end
max_length=max(length_all_sig);
all_data_one=[];
for i = 1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
if length(filt_signal)==max_length
[cepstra1,aspectrum,pspectrum] = melfcc(y1,Fs,'wintime',0.025,'hoptime',0.010);
else
filt_signal=[filt_signal' zeros(1,max_length-length(filt_signal))];
[cepstra1,aspectrum,pspectrum] = melfcc(filt_signal,Fs,'wintime',0.025,'hoptime',0.010);
end
all_data_one=[all_data_one cepstra1];
end
% % For the word "TWO"
all_data_two=[];
filepart1='myrecordtwo';
length_all_sig=[];
for i=1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
length_all_sig=[length_all_sig length(filt_signal)];
end
max_length=max(length_all_sig);
for i = 1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
if length(filt_signal)==max_length
[cepstra2,aspectrum,pspectrum] = melfcc(y1,Fs,'wintime',0.025,'hoptime',0.010);
else
filt_signal=[filt_signal' zeros(1,max_length-length(filt_signal))];
[cepstra2,aspectrum,pspectrum] = melfcc(filt_signal,Fs,'wintime',0.025,'hoptime',0.010);
end
all_data_two=[all_data_two cepstra2];
end
% % For the word "THREE"
all_data_three=[];
filepart1='myrecordthree';
length_all_sig=[];
for i=1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
length_all_sig=[length_all_sig length(filt_signal)];
end
max_length=max(length_all_sig);
for i = 1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
if length(filt_signal)==max_length
[cepstra3,aspectrum,pspectrum] = melfcc(y1,Fs,'wintime',0.025,'hoptime',0.010);
else
filt_signal=[filt_signal' zeros(1,max_length-length(filt_signal))];
[cepstra3,aspectrum,pspectrum] = melfcc(filt_signal,Fs,'wintime',0.025,'hoptime',0.010);
end
all_data_three=[all_data_three cepstra3];
end
% % Building model
X=[all_data_one'];
options = statset('MaxIter',500,'Display','final');
obj1 = gmdistribution.fit(X,8,'CovType',...
'diagonal','Options',options);
X=[all_data_two'];
obj2 = gmdistribution.fit(X,8,'CovType',...
'diagonal','Options',options);
X=[all_data_three'];
obj3 = gmdistribution.fit(X,8,'CovType',...
'diagonal','Options',options);
% % Test data
test_data=cepstra1';
% test_data=cepstra1';
% test_data=cepstra2';
% % Word recognition
[~,nlogl1] = posterior(obj1,test_data);
[~,nlogl2] = posterior(obj2,test_data);
[~,nlogl3] = posterior(obj3,test_data);
log_like=[nlogl1 nlogl2 nlogl3];
[~,Spoken_word]=min(log_like)
but it gives
Error in main4 (line 26)
results = VAD(y1,0.1,0.025,0.0125,20,1);
what should I do for this
  1 Comment
Image Analyst
Image Analyst on 20 May 2017
You can either format your code like explained here or you can attach it with the paper clip icon.
Did you write VAD yourself? If not, do you know where it's located on your computer? If not, then why do you think MATLAB should know anything at all about this function?

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 20 May 2017

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!