how i can solve this system ?
1 view (last 30 days)
Show older comments
syms xn h y(xn)
for i=0:10
xn=i*0.1
h=0.1
zz1 =- (1477460337761*h^11*diff(y,11))/30037739963212800 - (1737005*h^8*diff(y,8))/77526751744 - (51008492515467847*h^12*diff(y,12))/5994187205906922946560 - (10110880361*h^9*diff(y,9))/549470852985600 - (101083146864671*h^10*diff(y,10))/390490619521766400 - (9788019883*15990^(1/2)*h^10*diff(y,10))/26032707968117760 - (585088444379*15990^(1/2)*h^11*diff(y,11))/6937716673503383040 - (347401*15990^(1/2)*h^8*diff(y,8))/1162901276160 - (111320711579173*15990^(1/2)*h^12*diff(y,12))/5994187205906922946560 - (65591983921*15990^(1/2)*h^9*diff(y,9))/234294371713059840
zz2=(104319193183921*h^10*diff(y,10))/2342943717130598400 - (3907377521*h^8*diff(y,8))/244209267993600 - (429923740452448967*h^12*diff(y,12))/8563124579867032780800 - (9910051051*h^9*diff(y,9))/1098941705971200 - (16540874294011*h^11*diff(y,11))/60075479926425600 - (9788019883*15990^(1/2)*h^10*diff(y,10))/17355138645411840 - (585088444379*15990^(1/2)*h^11*diff(y,11))/4625144449002255360 - (347401*15990^(1/2)*h^8*diff(y,8))/775267517440 - (111320711579173*15990^(1/2)*h^12*diff(y,12))/3996124803937948631040 - (65591983921*15990^(1/2)*h^9*diff(y,9))/156196247808706560
zz3 =- (1955991885499*h^11*diff(y,11))/90113219889638400 - (11003909131*h^8*diff(y,8))/122104633996800 - (8705253814003866151*h^12*diff(y,12))/29970936029534614732800 - (7875861767*h^9*diff(y,9))/78495836140800 - (1303850330267*h^10*diff(y,10))/43387846613529600 - (9788019883*15990^(1/2)*h^10*diff(y,10))/26032707968117760 - (585088444379*15990^(1/2)*h^11*diff(y,11))/6937716673503383040 - (347401*15990^(1/2)*h^8*diff(y,8))/1162901276160 - (111320711579173*15990^(1/2)*h^12*diff(y,12))/5994187205906922946560 - (65591983921*15990^(1/2)*h^9*diff(y,9))/234294371713059840
zz4 =(4547202844711*h^10*diff(y,10))/468588743426119680 - (1737005*h^8*diff(y,8))/155053503488 - (302178685062265*h^12*diff(y,12)/799224960787589726208 - (163508515*h^9*diff(y,9))/14652556079616 - (97005815*h^11*diff(y,11))/400503199509504 - (9788019883*15990^(1/2)*h^10*diff(y,10))/52065415936235520 - (585088444379*15990^(1/2)*h^11*diff(y,11))/13875433347006766080 - (347401*15990^(1/2)*h^8*diff(y,8))/2325802552320 - (111320711579173*15990^(1/2)*h^12*diff(y,12))/11988374411813845893120 - (65591983921*15990^(1/2)*h^9*diff(y,9))/468588743426119680)
zz5=- (1726214758283*h^11*diff(y,11))/90113219889638400 - (5232353137*h^8*diff(y,8))/40701544665600 - (27752926318124149*h^12*diff(y,12))/4281562289933516390400 - (68436624773*h^9*diff(y,9))/549470852985600 - (4404078362813*h^10*diff(y,10))/130163539840588800 - (9788019883*15990^(1/2)*h^10*diff(y,10))/26032707968117760 - (585088444379*15990^(1/2)*h^11*diff(y,11))/6937716673503383040 - (347401*15990^(1/2)*h^8*diff(y,8))/1162901276160 - (111320711579173*15990^(1/2)*h^12*diff(y,12))/5994187205906922946560 - (65591983921*15990^(1/2)*h^9*diff(y,9))/234294371713059840
zz6 =(1737005*h^8*diff(y,8))/155053503488 - (74757566236285*h^11*diff(y,11))/11100346677605412864 - (144568166605445*h^12*diff(y,12))/266408320262529908736 + (391477419605*h^9*diff(y,9))/31239249561741312 + (9511697851193*h^10*diff(y,10))/234294371713059840 - (5676352380509*15990^(1/2)*h^10*diff(y,10))/18500577796009021440 + (115279420447*15990^(1/2)*h^11*diff(y,11))/1982204763858109440 - (5519411*15990^(1/2)*h^8*diff(y,8))/83438166564480 + (36362185193431709*15990^(1/2)*h^12*diff(y,12))/6389803561496779861032960 - (35397297329*15990^(1/2)*h^9*diff(y,9)/468588743426119680)
zz7 =(62538787456517*h^11*diff(y,11))/2342943717130598400 + (4030615613*h^8*diff(y,8))/40701544665600 - (107166257286436709*h^12*diff(y,12))/14985468014767307366400 + (7076681669*h^9*diff(y,9))/68683856623200 + (1759699188173*h^10*diff(y,10))/20025159975475200 - (12164394883*15990^(1/2)*h^10*diff(y,10))/26032707968117760 - (114830377813*15990^(1/2)*h^11*diff(y,11))/867214584187922880 - (347401*15990^(1/2)*h^8*diff(y,8))/1162901276160 + (470702853802487*15990^(1/2)*h^12*diff(y,12))/5994187205906922946560 - (955817131*15990^(1/2)*h^9*diff(y,9))/2574663425418240
zz8 =-(5*h^8*(5*15990^(1/2) + 1066)*(111320711579173*diff(y,12))*h^4 + 505516415943456*diff(y,11))*h^3 + 2253750306180048*diff(y,10)*h^2 + 1678105316634864*diff(y,9)*h + 1790682211989216*diff(y,9)/425986904099785324068864
zz9 =- (215178792887245*h^11*diff(y,11))/11100346677605412864 - (5211015*h^8*diff(y,8))/155053503488 - (2660118731399795*h^12*(diff(y,6))/799224960787589726208 - (306787419605*h^9*diff(y,9))/10413083187247104 - (3702128990857*h^10*diff(y,10))/234294371713059840 - (3839001249029*15990^(1/2)*h^10*diff(y,10))/55501733388027064320 - (1977132831887*15990^(1/2)*h^11*diff(y,11))/13875433347006766080 - (25875481*15990^(1/2)*h^8*diff(y,8))/111250888752640 - (51676687912276709*15990^(1/2)*h^12*diff(y,12))/2129934520498926620344320 - (31928890171*15990^(1/2)*h^9*diff(y,9))/156196247808706560)
zz10 =(62538787456517*h^11*diff(y,11))/2342943717130598400 + (4030615613*h^8*diff(y,8))/40701544665600 - (107166257286436709*h^12*diff(y,12))/14985468014767307366400 + (7076681669*h^9*diff(y,9))/68683856623200 + (1759699188173*h^10*diff(y,10))/20025159975475200 - (7411644883*15990^(1/2)*h^10*diff(y,10))/26032707968117760 - (125766933127*15990^(1/2)*h^11*diff(y,11))/3468858336751691520 - (347401*15990^(1/2)*h^8*diff(y,8))/1162901276160 - (693344276960833*15990^(1/2)*h^12*diff(y,12))/5994187205906922946560 - (44204608921*15990^(1/2)*h^9*diff(y,9))/234294371713059840
zz11 =(9788019883*15990^(1/2)*h^10*diff(y,10))/52065415936235520 - (1564188229*h^8*diff(y,8))/244209267993600 - (45020607710277973*h^12*diff(y,12))/59941872059069229465600 - (8166269543*h^9*diff(y,9))/1098941705971200 - (15031952382073*h^10*diff(y,10))/780981239043532800 - (75567503629*h^11*diff(y,11))/20025159975475200 + (585088444379*15990^(1/2)*h^11*diff(y,11))/13875433347006766080 + (347401*15990^(1/2)*h^8*diff(y,8))/2325802552320 + (111320711579173*15990^(1/2)*h^12*diff(y,12))/11988374411813845893120 + (65591983921*15990^(1/2)*h^9*diff(y,9))/468588743426119680
zz12 =- (186883695809*h^11*diff(y,11))/30037739963212800 - (11003909131*h^8*diff(y,8))/122104633996800 - (13579209502167227*h^12*diff(y,12))/5994187205906922946560 - (39503864657*h^9*diff(y,9))/549470852985600 - (8385943801*h^10*diff(y,10))/5206541593623552 - (9788019883*15990^(1/2)*h^10*diff(y,10))/26032707968117760 - (585088444379*15990^(1/2)*h^11*diff(y,11))/6937716673503383040 - (347401*15990^(1/2)*h^8*diff(y,8))/1162901276160 - (111320711579173*15990^(1/2)*h^12*diff(y,12))/5994187205906922946560 - (65591983921*15990^(1/2)*h^9*diff(y,9))/234294371713059840
lllll=solve([zz1,zz2,zz3,zz4,zz5,zz6,zz7,zz8,zz9,zz10,zz11,zz12])
end
0 Comments
Answers (0)
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!