Cannot interpret pca results

2 views (last 30 days)
Jaime  de la Mota
Jaime de la Mota on 25 Apr 2018
Hello everyone. I have generated a code which transforms a stochastic process making it dependant on uncorrelated random variables. However, the result doesn't look like the input at all. Can someone tell me why my score coefficient doesn't look like my input argument S?
if true
V = unifrnd(1,2,1,10000);
A = betarnd(2,2,1,10000);
t=50;
for i=1:t
S(i,:)=V*i+0.5*A*i^2;
theoreticalmeanS(i)=3/2*i+1/4*i^2;
meanS(i)=mean(S(i));
end
[coeff, score, latent]=pca(S');
scoreT=score';
figure('Name', 'coeff, principal component eigenvectors')
hold on
for i=1:t
plot(coeff(:,i))
end
figure
hold on
plot(S)
figure
hold on
plot(scoreT)
end
Thanks for reading.

Answers (0)

Categories

Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!