Algebra equation with symbolic

1 view (last 30 days)
Hello,
I try to solve the 4th order equation with symbolic, but the answer is not numerical numbers, see below:
My code is
m1 = 100; %kg
m2 = 10; %kg
c1 = 1;
c2 = 1;
c3 = 1;
k1 = 100;
k2 = 100;
k3 = 100;
%
M(1,1) = m1;
M(2,2) = m2
%
C(1,1) = (c1+c2);
C(1,2) = -c2;
C(2,1) = -c2;
C(2,2) = (c2+c3)
%
K(1,1) = (k1+k2);
K(1,2) = -k2;
K(2,1) = -k2;
K(2,2) = (k2+k3)
%
a0 = M(1,1)*M(2,2)
a1 = M(1,1)*C(2,2) + M(2,2)*C(1,1)
a2 = M(1,1)*K(2,2) + C(1,1)*C(2,2) + M(2,2)*K(1,1) - C(1,2)*C(2,1)
a3 = C(1,1)*K(2,2) + K(1,1)*C(2,2) - C(1,2)*K(2,1) - C(2,1)*K(1,2)
a4 = K(1,1)*K(2,2) - K(1,2)*K(2,1)
%
syms w
%
func = a0*w^4 + a1*w^3 + a2*w^2 + a3*w^1 + a4
%
wsol = solve(func,w)
then, the matlab give me a solution which format is root(σ1, z, 1). The sigma is the above function.
How can I get the solution?
Thank you.

Accepted Answer

John D'Errico
John D'Errico on 3 May 2018
Edited: John D'Errico on 3 May 2018
4 roots, all of which are complex.
vpa(wsol)
ans =
- 0.10269696007084728245763107930116 - 4.53087688516932263934459193381i
- 0.10269696007084728245763107930116 + 4.53087688516932263934459193381i
- 0.0073030399291527175423689206988387 + 1.208534091963622145606298796162i
- 0.0073030399291527175423689206988387 - 1.208534091963622145606298796162i
If you plot func, you will see that it never crosses zero.
  1 Comment
Walter Roberson
Walter Roberson on 3 May 2018
You can also double(wsol) instead of vpa(wsol)

Sign in to comment.

More Answers (1)

Walter Roberson
Walter Roberson on 3 May 2018
wsol = simplify(solve(func, w, 'MaxDegree', 4));
This will give you the numeric solutions, such as
((-1)^(1/4)*10^(1/4)*230339930457^(3/4)*(13099491187973 + 159912003^(1/2)*1638000000i)^(1/4)*(- 159912003^(1/2)*1638000000i - 13099491187973)^(1/6)*(2*33315^(1/2)*(- 5456997*30^(1/2)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/2) - 4218680045*10^(1/2)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/2) - 439697*10^(1/2)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/2) - 5*10^(1/2)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/2))^(1/2) + 10^(3/4)*2221^(1/2)*(33*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/6)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/4) + 3^(1/2)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(3/4)))*(159912003^(1/2)*8793940000000i + 10*(293032087997 + 159912003^(1/2)*20000000i)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3) + 133040111*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) + 16594597703959910)^(1/4)*1i)/7769568131425052256545514000
You should consider whether you actually want the numeric solutions, or if you want approximate results instead, such as the ones John showed.
If what you want is the approximate results then:
wsol_approx = vpasolve(func);

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!