How can I get analytical solution of trigonometric equations?
2 views (last 30 days)
Show older comments
Mukul
on 20 Jun 2018
Commented: Walter Roberson
on 28 Jun 2018
the constants are:
k11 = (16*V1*V1)/(n^3*(pi)^2*(2*pi*f)*L)
k22 = (16*V2*V2)/(n^3*(pi)^2*(2*pi*f)*L)
k33 = (16*V3*V3)/(n^3*(pi)^2*(2*pi*f)*L)
k12 = (8*V1*V2)/(n^3*(pi)^2*(2*pi*f)*L)
k13 = (8*V1*V3)/(n^3*(pi)^2*(2*pi*f)*L)
k23 = (8*V2*V3)/(n^3*(pi)^2*(2*pi*f)*L)
The equations are:
P1 = (k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*sin(x(4)*pi/180))+(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*sin(x(5)*pi/180))
P2 = -(k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*sin(x(4)*pi/180))+(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*sin((x(5)-x(4))*pi/180))
P3 = -(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*sin(x(5)*pi/180))+(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*sin((x(4)-x(5))*pi/180))
Q1 = (k11.*cos(x(1)*pi/360).*cos(x(1)*pi/360))-(k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*cos(x(4)*pi/180))-(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*cos(x(5)*pi/180))
Q2 = -(k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*cos(x(4)*pi/180))+(k22.*cos(x(2)*pi/360).*cos(x(2)*pi/360))-(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*cos((x(5)-x(4))*pi/180))
Q3 = -(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*cos(x(5)*pi/180))-(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*cos((x(5)-x(4))*pi/180))+(k33.*cos(x(3)*pi/360).*cos(x(3)*pi/360))
How can I solve for the angles x(1), x(2), x(3), x(4) and x(5)? Can anyone please help me to solve these equations?
8 Comments
Walter Roberson
on 26 Jun 2018
There is not necessarily any error in your code. The system is just difficult to solve.
My work so far shows that for each x1 there are two x2, and that for each x2 there are four x3. Computation is slow, so I have not gotten further than that quite yet.
Accepted Answer
Walter Roberson
on 22 Jun 2018
Analytic solution:
x(1) = 180 + 360*Z1
x(2) = 180 + 360*Z2;
x(3) = 180 + 360*Z3;
x(4) and x(5) arbitrary (that is, the above 3 together solve all 5 equations)
Here, Z1, Z2, and Z3 represent arbitrary integers
6 Comments
Walter Roberson
on 28 Jun 2018
Solving for x(4) and x(5) both failed at the place I was indicating was taking a long time. I did not go back to try substituting in the other choices.
More Answers (0)
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!