Finding min point of a second derivative function

2 views (last 30 days)
What I have done is:
f=@(x)2./sqrt(pi).*integral(@(t)exp(-t.^2),0,x);
fplot(f,[-5,5])
DELTA=0.01;
X=-5:DELTA:5;
Y=f(X);
DY_DX=diff(Y)./DETLA;
But it does not work, is there an easier way to the first/second derivative? (not symbolic)

Answers (1)

Eduard Reitmann
Eduard Reitmann on 3 Aug 2018
You were almost there. Hope this helps. The zero in the differential is a bit crude (just to keep the vectors the same length), but a small enough step size should give you are very accurate answer.
f = @(x) (2./sqrt(pi)).*integral(@(t) exp(-t.^2),0,x);
dx = 0.01;
x = (-5:dx:5)';
y = arrayfun(f,x);
dydx = [0;diff(y)./dx];
d2ydx2 = [0;diff(dydx)./dx];
[dy2d2x_min,minpos] = min(d2ydx2);
x_min = x(minpos)
figure;
plot(x,[y dydx d2ydx2],x_min,dy2d2x_min,'*')
legend('erf(x)','erf''(x)','erf''''(x)')

Categories

Find more on MATLAB in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!