How to find eigenvalue of a matrix (attached) having three variables?

2 views (last 30 days)
I have a 33X33 matrix with three variables (KA1, KA2, KA3). I want to take its eigenvalues. The eigenvalue should be a function of these three variables. Any idea? Thanks.
A =
[ -0.1754, -0.01261, 0.005666, 0.03756, 0.02875, 0.01006, -0.04169, -0.002683, 0.000833, -0.02971, -0.02183, -0.01673, 0.004094, -0.002681, -0.001413, 0, 0, 0, 0.1116, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -0.2057, -13.31, -0.0657, 0.03443, 13.41, -0.1167, 0.5673, 0.00206, -0.000514, 0.4043, 0.01676, 0.01032, -0.1771, 0.2988, -0.1217, 0, 0, 0, 0, 0.1667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0.1378, -0.09722, -1.388, -0.02306, 0.2217, 1.044, -0.3221, -0.004694, -1.429e-5, -0.2296, -0.03819, 0.0002871, 0.1011, 0.06514, -0.1663, 0, 0, 0, 0, 0, 0.1698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 10.12, 0.5683, -0.2554, -8.933, -1.296, -0.4534, 1.879, 0.121, -0.03755, 1.339, 0.984, 0.7541, -0.1846, 0.1209, 0.06369, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 1.076, 30.76, 0.3436, -0.1801, -32.16, 0.6101, -2.967, -0.01077, 0.002688, -2.114, -0.08764, -0.05399, 0.9263, -1.563, 0.6364, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 5.039, -3.556, 21.52, -0.8434, 8.11, -27.88, -11.78, -0.1717, -0.0005228, -8.397, -1.397, 0.0105, 3.699, 2.383, -6.082, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, -3.226, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -0.3163, 0.07269, -0.02432, 0.05294, -0.1658, -0.04318, -0.3983, -16.94, -0.01262, -0.2839, -15.62, 0.2534, 0.112, -0.2546, 0.1426, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0.1245, -0.001107, 0.01228, -0.02083, 0.002524, 0.0218, 0.2527, -0.01684, -10.82, 0.1801, -0.137, -8.9, -0.0731, -0.08933, 0.1624, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -0.3569, 0.9731, -0.3902, 0.05974, -2.219, -0.6928, -38.3, -0.03862, 0.02101, -36.0, -0.3142, -0.4219, 2.197, -1.111, -1.086, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -2.2, 0.5057, -0.1692, 0.3683, -1.153, -0.3004, -2.771, -13.36, -0.08779, -1.975, -17.17, 1.763, 0.7792, -1.771, 0.992, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -1.458, 0.01296, -0.1438, 0.244, -0.02957, -0.2554, -2.961, 0.1973, -5.191, -2.11, 1.605, -8.184, 0.8565, 1.047, -1.903, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -2.86, -11.95, 4.807, 0.4787, 27.26, 8.535, 86.55, 0.4028, -0.2332, 61.68, 3.277, 4.683, -26.26, 13.27, 12.99, -0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.974, 0, 0, 0, 0, 0]
[ 3.478, 74.73, 10.82, -0.5822, -170.4, 19.21, -170.5, -4.851, -1.489, -121.5, -39.46, 29.91, 51.65, -95.45, 43.8, 0, -0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29.45, 0, 0, 0, 0]
[ 18.45, -61.83, -61.2, -3.087, 141.0, -108.7, -349.2, 6.465, 5.145, -248.9, 52.59, -103.3, 106.1, 92.13, -198.2, 0, 0, -0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62.62, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.365, 0, 0, 0, 0, 0, 3.185, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.947, 0, 0, 0, 0, 0, 3.185, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.536, 0, 0, 0, 0, 0, 3.185, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5143, 0, 0, -2.857, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5143, 0, 0, -2.857, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5143, 0, 0, -2.857, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -5.322*KA1, 0.2824*KA1, -0.1263*KA1, 0.8907*KA1, -0.6439*KA1, -0.2243*KA1, -0.2677*KA1, 0.05718*KA1, -0.01764*KA1, -0.1908*KA1, 0.4652*KA1, 0.3543*KA1, -0.06187*KA1, 0.04441*KA1, 0.01746*KA1, 0, 0, 0, -0.9*KA1, 0, 0, 5.0*KA1, 0, 0, -5.0, 0, 0, 0, 0, 0, 0, 0, 0]
[ -1.192*KA2, 1.977*KA2, -0.2315*KA2, 0.1995*KA2, -4.509*KA2, -0.411*KA2, 0.816*KA2, 0.4063*KA2, -0.02598*KA2, 0.5816*KA2, 3.305*KA2, 0.5217*KA2, -0.2788*KA2, 0.3427*KA2, -0.06391*KA2, 0, 0, 0, 0, -0.9*KA2, 0, 0, 5.0*KA2, 0, 0, -5.0, 0, 0, 0, 0, 0, 0, 0]
[ -1.237*KA3, 0.541*KA3, -0.8733*KA3, 0.207*KA3, -1.234*KA3, -1.55*KA3, 0.8115*KA3, 0.09036*KA3, -0.1336*KA3, 0.5783*KA3, 0.7351*KA3, 2.683*KA3, -0.2786*KA3, -0.01786*KA3, 0.2965*KA3, 0, 0, 0, 0, 0, -0.9*KA3, 0, 0, 5.0*KA3, 0, 0, -5.0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10.0, 0, 0, 10.0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10.0, 0, 0, 10.0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10.0, 0, 0, 10.0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.061, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20.0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.061, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20.0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.061, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20.0]

Answers (1)

johnson wul
johnson wul on 26 Jul 2019
If your matrix is not symmetric, you should change it into a symmetric one by using the formular:
symmetric_Matrix(i,j) = ur_(matrix(i,j)+ur_matrix(i,j)')/2
After doing this just use eig() function to obtain eigenvalues

Categories

Find more on Linear Algebra in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!