computation takes more time at each iteration

4 views (last 30 days)
Hello felows,
I have a continiouse simulation. ( discrete state space equation). I tr to compute the next state using the previous one. the problem is each time the loop takes more time compare to the previouse one.
I try to plot the output every 10000 itterations. The first time takes 1 second, the second 2 and it increase
%% main code
close all
clc
clear all
global Ts
Ts=1e-7;
global r_i L_i C_i R_l L_l L_g r_g i_L_i i_C_i i_L_g i_L_l
global Zeq Zeq_2 X_eq R_eq Z_i Z_g Z_L i_Z_i i_Z_g i_Z_L
global omega delta count Wn
global V_g V_i
global I_L_i_o V_C_i_o I_L_l_o I_L_g_o
global t D pi_2_3 Brk
Brk=1;
pi_2_3=(2*pi/3);
Wn=120*pi;
I_L_i_o=[0 0 0]; V_C_i_o=[0 0 0];I_L_l_o=[0 0 0];I_L_g_o=[0 0 0];
[r_i, L_i ,C_i ,R_l, L_l, L_g ,r_g]=initi_va();
i_L_i=1/L_i;
i_C_i=1/C_i;
i_L_g=1/L_g;
i_L_l=1/L_l;
X_eq=120*pi*(L_i+L_g);
R_eq=(r_i+r_g);
Zeq_2=(X_eq)^2+(R_eq)^2;
Zeq=sqrt(Zeq_2);
Z_i=r_i+i*(Wn*L_i);
Z_g=r_g+i*(Wn*L_g);
Z_L=1/((1/R_l)+i*(Wn*C_i));
i_Z_i=Z_i^-1;
i_Z_g=Z_g^-1;
i_Z_L=Z_L^-1;
delta=0;
D.delta=0
T_end=.06;
omega=120*pi;
count=1;
t=0;
tic
while t(count)<T_end
D.E_abs(count)=111;
D.V_abs(count)=110;
if delta<.001
delta=delta+1e-5;
end
D.delta(count)=delta;
three_phase_version();
%[D.P2G(count),D.Q2G(count)]=steady_state();
t(count+1)=t(count)+Ts;
image_show_c()
count=count+1;
end
t(end)=[];
%% Plotting
close all
figure
subplot(2,1,1)
plot(t,D.P2G)
title("P")
subplot(2,1,2)
plot(t,D.Q2G)
title("Q")
figure
subplot(2,1,1)
plot(t,D.V_g(:,1))
title("V_G")
subplot(2,1,2)
plot(t,D.V_i)
title("V_i")
figure
plot(t,D.I_L_i)
title("I_L_I")
figure
plot(t,D.I_L_g)
title("I_L_G")
figure
subplot(2,1,1)
plot(t,D.delta)
title("delta")
subplot(2,1,2)
%plot(t,D.Q2G)
title("--")
%% Functions
function [I_L_i, V_C_i ,I_L_l ,I_L_g ]=...
next_s(V_i, V_g ,Brk ,I_L_i_o, V_C_i_o ,I_L_l_o ,I_L_g_o)
global r_i L_i C_i R_l L_l L_g r_g Ts
global i_L_i i_C_i i_L_g i_L_l
if (C_i~=0 && L_g~=0 )
I_C=I_L_i_o-I_L_l_o-(V_C_i_o/R_l)-I_L_g_o;
V_C_i=(Ts*i_C_i)*I_C+V_C_i_o;
I_L_l=(Ts*i_L_l)*V_C_i_o+I_L_l_o;
I_L_i=(Ts*i_L_i)*(V_i-V_C_i_o-(r_i*I_L_i_o))+I_L_i_o;
if Brk==1
I_L_g=(Ts*i_L_g)*(V_C_i_o-V_g-I_L_g_o*r_g)+I_L_g_o;
else
I_L_g=0;
end
end
if (C_i~=0 && L_g==0)
I_C=I_L_i_o-I_L_l_o-(V_C_i_o/R_l)-Brk*((V_C_i_o-V_g)/r_g);
V_C_i=(Ts/C_i)*I_C+V_C_i_o;
I_L_l=(Ts/L_l)*V_C_i_o+I_L_l_o;
I_L_i=(Ts/L_i)*(V_i-V_C_i_o-(r_i*I_L_i_o))+I_L_i_o;
if Brk==1
I_L_g=(V_C_i_o-V_g)/r_g;
else
I_L_g=0;
end
end
if (C_i==0 && L_g~=0 )
V_C_i=(I_L_i_o-I_L_l_o-I_L_g_o)*R_l;
I_L_l=(Ts/L_l)*V_C_i+I_L_l_o;
I_L_i=(Ts/L_i)*(V_i-V_C_i-(r_i*I_L_i_o))+I_L_i_o;
if Brk==1
I_L_g=(Ts/L_g)*(V_C_i-V_g-I_L_g_o*r_g)+I_L_g_o;
else
I_L_g=0;
end
end
if (C_i==0 && L_g==0 )
V_C_i=V_g+(I_L_i_o-I_L_l_o)*r_g;
I_L_l=(Ts/L_l)*V_C_i+I_L_l_o;
I_L_i=(Ts/L_i)*(V_i-V_C_i-(r_i*I_L_i_o))+I_L_i_o;
if Brk==1
I_L_g=(Ts/L_g)*(V_C_i-V_g-I_L_g_o*r_g)+I_L_g_o;
else
I_L_g=0;
end
end
% V_C_i=(Ts/C_i)*(I_L_i_o-I_L_l_o-(V_C_i_o/R_l))+V_C_i_o;
% I_L_i=(Ts/L_i)*(V_i-V_C_i_o-(r_i*I_L_i_o))+I_L_i_o;
% I_L_l=(Ts/L_l)*V_C_i_o+I_L_l_o;
% I_L_i=vpa(I_L_i,4);
% V_C_i=vpa(V_C_i,4);
% I_L_l=vpa(I_L_l,4);
% I_L_g=vpa(I_L_g,4);
end
function [y , err]=PI(ref,x,y_o,Kp, Ki,Lim_n,Lim_p,ff)
err=(ref-x); %err
err = err*Kp; %kp
temp_P= err;
err = err*Ki; %ki
temp_I=y_o+err; %int
y=temp_P+temp_I;
if y>Lim_p
y=Lim_p;
end
if y<Lim_n
y=Lim_n;
end
end
function [d_w_n, delta]=VSG(d_p,d_w_o,delta_o)
global Ts
Dp=5000; %droop
J=0.1; %Moment of Inertia
d_w_n=d_w_o+((d_p-d_w_o*Dp)/J)*Ts;
delta=delta_o+d_w_o*Ts;
end
function [P,Q] = PQ_comput(Vabc,Iabc)
P=Vabc*Iabc';
Q=(1/sqrt(3))*((Vabc(2)-Vabc(3))*Iabc(1)+(Vabc(3)-Vabc(1))*Iabc(2)+(Vabc(1)-Vabc(2))*Iabc(3));
end
function [r_i, L_i, C_i, R_l, L_l, L_g ,r_g]=initi_va()
r_i=10e-3;
L_i=20e-6;
C_i=1e-6; % Do not define zero with R_l=inf
L_g=20e-6;
r_g=10e-3;
R_l=100; % Do not define inf with C_i=0
L_l=100;
end
function three_phase_version()
global count omega Brk
global I_L_i_o V_C_i_o I_L_l_o I_L_g_o
global V_g V_i
global t delta D pi_2_3
for j=1:3
V_g=110*sqrt(2)*sin((omega*t(count))+((j-2)*pi_2_3));
V_i=110*sqrt(2)*sin(omega*t(count)+((j-2)*pi_2_3)+D.delta(count));
D.V_g(count,j)=V_g;
D.V_i(count,j)=V_i;
D.I_L_i(count,j)=I_L_i_o(j);
D.V_C_i(count,j)=V_C_i_o(j);
D.I_L_l(count,j)=I_L_l_o(j);
D.I_L_g(count,j)=I_L_g_o(j);
[I_L_i_o(j), V_C_i_o(j) ,I_L_l_o(j) ,I_L_g_o(j) ]=...
next_s(V_i, V_g ,Brk ,I_L_i_o(j), V_C_i_o(j) ,I_L_l_o(j) ,I_L_g_o(j));
end
[D.P2G(count),D.Q2G(count)]=PQ_comput(D.V_i(count,:),D.I_L_i(count,:));
end
function [P, Q]=steady_state()
global count
global X_eq R_eq Zeq_2
global i_Z_i i_Z_g i_Z_L
global delta D
%{
E=D.E_abs(count);
V=D.V_abs(count);
P=3*.5*(((E^2/Zeq_2)-((E*V*cos(delta))/Zeq_2))*R_eq+(E*V*X_eq*sin(delta))/Zeq_2);
Q=3*.5*(((E^2/Zeq_2)-((E*V*cos(delta))/Zeq_2))*X_eq-(E*V*R_eq*sin(delta))/Zeq_2);
%}
E=D.E_abs(count)*(cos(delta)+i*sin(delta));
V=D.V_abs(count);
V_C_jw=(E*i_Z_i+V*i_Z_g)/(i_Z_i+i_Z_g+i_Z_L);
I_i=(E-V_C_jw)*i_Z_i;
I_g=(V_C_jw-V)*i_Z_g;
S_i=3*E*conj(I_i);
%S_g=3*V*conj(I_g);
P=real(S_i);
Q=imag(S_i);
end
function image_show_c()
global count t D
if rem(count,10000)==0
toc
display(t(count));
%close all
subplot(2,1,1)
plot(t(1:count),D.P2G(1:count))
title("P")
subplot(2,1,2)
plot(t(1:count),D.Q2G(1:count))
title("Q")
hold on
pause(1e-5)
tic
end
end
s. I tries to comment the plotting but it didn't help.
  2 Comments
Sepehr Saadatmand
Sepehr Saadatmand on 2 Jul 2019
Hi Stephen,
I put lots of time on what you said and it worked well. Now I am sharing my experience with others.
  1. The main reason of the slow proceed was because of not preallocating my arrays and matrices and every time I extended the previous array it took lots of time.
  2. I have not worked with code profiler and it was awesome
  3. As you mentioned another reason was external variables.
Thanks a lot

Sign in to comment.

Answers (0)

Categories

Find more on Parallel Computing in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!