fft of sin(pi*x/5)./(pi*x) returns NaN
2 views (last 30 days)
Show older comments
Hi,
I don't know why, if I do the G=sin(pi*x/5)./(pi*x), it returns NaN, can you help me?
Thanks
x=-100:0.1:100
G=sin(pi*x/5)./(pi*x)
H= abs(fft(G))
Tinc=0.01
Fs=1/Tinc;
freq =transpose( -Fs/2:Fs/length(G):Fs/2-(Fs/length(G)));
figure()
plot(x,G)
figure()
plot(freq,H)
0 Comments
Accepted Answer
Star Strider
on 11 Jul 2019
When ‘x’ is 0, ‘G’ becomes 0/0, and the IEEE standard defines that as NaN. Any NaN in a vector will propagate through all calculations involving it to result in the entire vector being NaN.
You can get around that by creating a version of L’Hospital’s rule by addint eps to ‘x’:
G=sin(pi*(x+eps)/5)./(pi*(x+eps))
Thar results in the entire vector — and its fft — being defined and not NaN.
0 Comments
More Answers (0)
See Also
Categories
Find more on NaNs in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!