how to change the precision of symbolic variables.
1 view (last 30 days)
Show older comments
s^3*246655351680430349161861489360895748665691918000757954295365632i - s^2*(36212255157820456428489768408649977023491870935380775514669056 + 578091697775954585022159881976519846765626019509350787237019648i) - s*(130062300639770074374222879395026417216202027377365642475732992 + 861105664727459103565145461543508318180271162190507702581460992i) - (223478472834610436324352002622703850555766990429849990494534772 + 585856833391770884939511626951491940256735302346867433027453683i)
I need it to be 6 digit precised.
0 Comments
Answers (1)
Star Strider
on 1 Oct 2019
syms s
p = s^3*246655351680430349161861489360895748665691918000757954295365632i - s^2*(36212255157820456428489768408649977023491870935380775514669056 + 578091697775954585022159881976519846765626019509350787237019648i) - s*(130062300639770074374222879395026417216202027377365642475732992 + 861105664727459103565145461543508318180271162190507702581460992i) - (223478472834610436324352002622703850555766990429849990494534772 + 585856833391770884939511626951491940256735302346867433027453683i);
p_vpa = vpa(p, 6)
producing:
p_vpa =
s^3*2.46655e+62i - s^2*(3.62123e+61 + 5.78092e+62i) - s*(1.30062e+62 + 8.61106e+62i) - (2.23478e+62 + 5.85857e+62i)
The expression retains full internal precision, so nothing is lost.
4 Comments
Star Strider
on 1 Oct 2019
If you want to automatically determine what I call the ‘scaling factor’, use this:
scaling_factor = vpa(10.^-fix((log(coeffs(p))/log(10))))
where ‘p’ is your polynomial of interest.
Experiment to get the result you want.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!