Porting Network from Keras to Matlab

2 views (last 30 days)
Hamza Yerlikaya
Hamza Yerlikaya on 18 Nov 2019
I am trying to port a simple network from python+keras to matlab. Model in question is the following,
def build_network(input_features=None):
# first we specify an input layer, with a shape == features
inputs = Input(shape=(input_features,), name="input")
x = Dense(32, activation='relu', name="hidden1")(inputs)
x = Dense(32, activation='relu', name="hidden2")(x)
x = Dense(32, activation='relu', name="hidden3")(x)
x = Dense(32, activation='relu', name="hidden4")(x)
x = Dense(16, activation='relu', name="hidden5")(x)
# for regression we will use a single neuron with linear (no) activation
prediction = Dense(1, activation='linear', name="final")(x)
model = Model(inputs=inputs, outputs=prediction)
model.compile(optimizer='adam', loss='mean_absolute_error')
return model
Looking throught the list of builtin layers [1]. What I've figured out is keras dense layer is matlab fullyConnectedLayer but i can not find a input layer that is not an lstm layer or an image layer. What would be the matlab equavelent of keras's Input layer?
[1] https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html

Answers (1)

Sivylla Paraskevopoulou
Sivylla Paraskevopoulou on 27 Apr 2022
The MATLAB Deep Learning Toolbox introduced featureInputLayer in R2020b. For more information on how the importTensorFlowNetwork function tranlates TensorFlow-Keras layers to MATLAB layers, see TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers.

Categories

Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!