how to find the BER and PAPR for mimo ofdm systems using matlab code
5 views (last 30 days)
Show older comments
how to find out the ber,papr and power spectral density of a 2x2 ldpc mimo ofdm ?
2 Comments
Darshan Ramakant Bhat
on 13 Mar 2020
Found a related File Exchange Submission. Contact the File Exchange Author for more information regarding the algorithm :
Kasyap Suresh
on 19 Apr 2020
I am just referring to ABDUL's post here. This is about simulating a QPSK system and evaluating its BER for MIMO OFDM based systems. Given below is the code. Hope you find this useful. All the best.
M=4;
k=log2(M); % number of bits/symbol
number_of_data_points=64; % FFT Size or total number of subcarriers=N=64= IFFT size
block_size=16; % Block Size, no of rows,data subcarriers
BW=8*10^6; % Bandwidth of the OFDM system
Nsp=52;
%Derived Parameters
deltaf=BW/number_of_data_points;%bandwidth of each subcarriers including used and unused subacarriers
TFFT=1/deltaf; % ofdm_symbol_duration
TGI=TFFT/4; % duration of the cyclic prefix= guard interval duration 25% of the subcarriers to be used as a GI
% possible guard band values 1/4, 1/8, 1/16 and 1/32
Tsignal= TGI+TFFT ; % total ofdm symbol duration
Ncp=number_of_data_points*(TGI/TFFT); % length of the cyclic prefix
cp_len=ceil(0.25*block_size);
fft_points=number_of_data_points;
ifft_points=number_of_data_points;
Nt=2;
Nr=2;
cp_start=block_size-cp_len;
cp_end=block_size;
actual_cp=zeros(cp_len, block_size);
data_subcarriers=cp_start+Nsp;
nsf=8/7;
Fs=ceil(nsf*BW);
% initialization of SNR
SNRstart=0;
SNRincrement=1;
SNRend=25;
index=0;
%-------------------------------------------------------------------------%
%1. 1st Block -Implementation of binary data %
%1st Block -Implementation of bianry data- generation %
%-------------------------------------------------------------------------%
x1=randi([0 1],1,64);
br=BW; %Let us transmission bit rate 1000000
fc=br; % minimum carrier frequency
Tc=1/br; % bit duration
tmod=Tc/99:Tc/99:Tc; % Time vector for one bit information
H=[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1;0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0;1,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0;0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0;0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0;0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0;0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0;0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0;0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0;1,1,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0;0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0;0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0;0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0;0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1;0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0;0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0;1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0;1,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1;0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0;0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1;1,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0;0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0;0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0;0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0;1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0;0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0;0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1];
%-------------------------------------------------------------------------%
%------- encoded data by using LDPC Encoder and Parity Check Matrix-------%
%-------------------------------------------------------------------------%
data_encoded=x1*H;
mod_data=mod(data_encoded,2);
%-------------------------------------------------------------------------%
%---------3. modulation of the data by using psk------------------------- %
%-------------------------------------------------------------------------%
data_NRZ=2*mod_data-1; % Data Represented at NZR form for QPSK modulation
s_p_data=reshape(data_NRZ,2,length(x1)/2); % S/P convertion of data
ymod=[];
ycomplex=[];
y_in=[];
y_qd=[];
for imod = 1:length(x1)/2
y1 = s_p_data(1,imod)*cos(2*pi*fc*tmod); % inphase component
y2 = s_p_data(2,imod)*sin(2*pi*fc*tmod) ;% Quadrature component
y_in = [y_in y1]; % inphase signal vector
y_qd = [y_qd y2]; %quadrature signal vector
ymod=[ymod y1+y2]; % modulated signal vector
ycomplex = [ycomplex (sign(y1))+(1i*sign(y2))];
end
psk_mod=ycomplex;
Tx_sig1=ymod; % transmitting signal after modulation
Tx_sig=ycomplex; % transmitting signal after modulation
Tx_sig_complex=ycomplex;
ttmod=Tc/99:Tc/99:(Tc*length(x1))/2;
% to find out the number of columns after reshaping
num_colums=(size(Tx_sig_complex,1)*size(Tx_sig_complex,2))/block_size;
%-------------------------------------------------------------------------%
% 5.to perform serial to parallel conversion %
%-------------------------------------------------------------------------%
reshaped_mod_data = reshape(Tx_sig1,[block_size, num_colums]);
%-------------------------------------------------------------------------%
% 6. To Perform IFFT and Cyclic Prefix %
% to create empty matrix to put ifft data %
% 7.operate column wise and do cyclic prefix, column wise cyclic prefix is done
%-------------------------------------------------------------------------%
for ireshape=1:num_colums
ifft_data_matrix(:,ireshape)=ifft(reshaped_mod_data(:,ireshape));
for jcplen= 1:cp_len % compute cyclic prefix data
actual_cp(jcplen,ireshape) = ifft_data_matrix(jcplen+cp_start,ireshape).';
end
ifft_data_after_cp(:,ireshape) = vertcat(actual_cp(:,ireshape),ifft_data_matrix(:,ireshape));% perform cyclic prefix
end
%-------------------------------------------------------------------------%
% 8. to perform parallel to serial conversion %
%-------------------------------------------------------------------------%
parallel_serial_tx = reshape(ifft_data_after_cp(:,:),size(ifft_data_after_cp(:,:),2),size(ifft_data_after_cp(:,:),1));
%-------------------------------------------------------------------------%
% 12. To find the number of rows and colums after ifft %
%-------------------------------------------------------------------------%
[ifft_rows,ifft_colums]=size(parallel_serial_tx);
ofdm_length=ifft_rows*ifft_colums;
%-------------------------------------------------------------------------%
% to convert to serial stream for to obtain OFDM Signal %
% to generate ofdm signal - begin %
%-------------------------------------------------------------------------%
ofdm_signal= reshape(parallel_serial_tx,1,ofdm_length) ;% serial_parallel_form = reshape( b,block_size,num_colums) ;1x130
received_bits=zeros(size(SNRstart:SNRincrement:SNRend));
index=0;
for snr=SNRstart:SNRincrement:SNRend
index=index+1;
%creation of multipath channel
channel = randn(size(parallel_serial_tx))+sqrt(-1)*randn(size(parallel_serial_tx));
% Pass the signal thru the channel
after_channel = filter(reshape(channel,1,[]),1,ofdm_signal);
%generate AWGN noise
awgn_noise=awgn(after_channel,snr,'measured');
% received signal
received_signal = after_channel+awgn_noise;
% To perform Serial to Parallel Conversion
serial_parallel_form_rx = reshape(received_signal,[ifft_rows,ifft_colums]).';%64x2
%To Remove Cyclic Prefix
serial_parallel_form_rx(1:cp_len,:,:)=[];
% To Perform FFT operation
receivd_signal_fft_rx=fft(serial_parallel_form_rx);
% To Perform Parallel to Serial Conversion
parallel_serial_form_rx= reshape(receivd_signal_fft_rx,1,[]);
% To pass through Demodulator
Rx_data=[];
Rx_sig=parallel_serial_form_rx; % Received signal
Rx_sig_real=sign(real(Rx_sig));
Rx_sig_imag=sign(imag(Rx_sig));
for (idemod=1:1:length(x1)/2)
%%XXXXXX inphase coherent dector XXXXXXX
Z_in=Rx_sig_real((idemod-1)*length(tmod)+1:idemod*length(tmod)).*cos(2*pi*fc*tmod);
% Z_in=Rx_sig_real(((idemod-1)*length(tmod)+1:idemod*length(tmod)).*cos(2*pi*fc*tmod));
% Z_in=Rx_sig_real((idemod-1)*length(tmod)+1:}.2demod*length(tmod)).*cos(2*pi*fc*tmod);
% above line indicat multiplication of received & inphase carred signal
Z_in_intg=(trapz(tmod,Z_in))*(2/Tc);% integration using trapizodial rull
if(Z_in_intg>0) % Decession Maker
Rx_in_data=1;
else
Rx_in_data=0;
end
%%XXXXXX Quadrature coherent dector XXXXXX
Z_qd=Rx_sig_imag(((idemod-1)*length(tmod))+1:idemod*length(tmod)).*sin(2*pi*fc*tmod);
%above line indicat multiplication ofreceived & Quadphase carred signal
Z_qd_intg=(trapz(tmod,Z_qd))*(2/Tc);%integration using trapizodial rull
if (Z_qd_intg>0)% Decession Maker
Rx_qd_data=1;
else
Rx_qd_data=0;
end
Rx_data=[Rx_data Rx_in_data Rx_qd_data]; % Received Data vector
end
psk_demod_mod=Rx_data;
Hinv=H.';
rece_decoder=psk_demod_mod*Hinv;
rece_decoder_mod=mod(rece_decoder,2);
% [n, received_bits(index)]=biterr(x1,psk_demod_mod);
[n, received_bits(index)]=biterr(x1,rece_decoder_mod);
end
snr=SNRstart:SNRincrement:SNRend;
%% Plotting BER vs SNR
figure (6)
semilogy(snr,(received_bits),'-ok');
grid;
title('OFDM Bit Error Rate .VS. Signal To Noise Ratio');
ylabel('BER');
xlabel('SNR [dB]');
Answers (0)
See Also
Categories
Find more on Test and Measurement in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!