Find 16 variables in matrix with 16 equation in matrix

2 views (last 30 days)
This is my code
clear; close; clc;
syms a1_head a2_head b hstar
%Parameter Massa
m1 = 8095; % massa train set 1 dalam kg
m2 = 8500; % massa train set 2 dalam kg
g = 10;
c_0_1 = 0.01176;
c_1_1 = 0.00077616;
c_2_1 = 4.48 ;
c_0_2 = 0.01176 ;
c_1_2 = 0.00077616;
c_2_2 = 4.48;
v_0 = 300;
hstar = 120;
a_1 = -1./m1.*(c_1_1 + 2.*c_2_1.*v_0);
a_2 = -1./m2.*(c_1_2 + 2.*c_2_2.*v_0);
a_1_head = 1-(a_1.*hstar);
a_2_head = 1-(a_2.*hstar);
b = 1;
% Model data
A = sym(zeros(4,4));
A(1,2) = a_1_head;
A(3,2) = (a_2_head) - 1; A(3,4) = a_2_head;
display(A);
B = sym(zeros(4,2));
B(1,1) = -b*hstar;
B(2,1) = b;
B(3,2) = -b*hstar ;
B(4,1) = -b; B(4,2) = b;
display(B);
% Q and R matrices for ARE
Q = sym(eye(4)); display(Q);
R = sym(zeros(2,2)); R(1,:) = [1 1]; R(2,:) = [1 2]; display(R);
% Matrix S to find
svar = sym('s',[1 16]);
S = [svar(1:4); svar(5:8); svar(9:12); svar(13:16)];
% S(2,1) = svar(2);
% S(3,1) = svar(3);
% S(3,2) = svar(7);
% S(4,1) = svar(4);
% S(4,2) = svar(8);
% S(4,3) = svar(12);
display(S);
% LHS of ARE: A'*S + S*A' - S*B*Rinv*B'*S
left_ARE = transpose(A)*S + S*A - S*B*inv(R)*transpose(B)*S;
display(left_ARE);
% RHS of ARE: -Q
right_ARE = -Q;
display(right_ARE);
% Find S
[Sol_s] = solve(left_ARE == right_ARE)
% % Find S
% X = linsolve(left_ARE,right_ARE);
I try use solve and linsolve still can't get the variable and the process is very long
  4 Comments
Ivan Dwi Putra
Ivan Dwi Putra on 10 Jun 2020
eft_ARE =
[ s5*(240*s1 - 2*s2 - 120*s3 + 3*s4) - s13*(360*s1 - 3*s2 - 240*s3 + 5*s4) + s9*(14400*s1 - 120*s2 - 14400*s3 + 240*s4) - s1*(28800*s1 - 240*s2 - 14400*s3 + 360*s4), (2874340168023969*s1)/70368744177664 + (2670370432474805*s3)/70368744177664 + s6*(240*s1 - 2*s2 - 120*s3 + 3*s4) - s14*(360*s1 - 3*s2 - 240*s3 + 5*s4) + s10*(14400*s1 - 120*s2 - 14400*s3 + 240*s4) - s2*(28800*s1 - 240*s2 - 14400*s3 + 360*s4), s7*(240*s1 - 2*s2 - 120*s3 + 3*s4) - s15*(360*s1 - 3*s2 - 240*s3 + 5*s4) + s11*(14400*s1 - 120*s2 - 14400*s3 + 240*s4) - s3*(28800*s1 - 240*s2 - 14400*s3 + 360*s4), (2740739176652469*s3)/70368744177664 + s8*(240*s1 - 2*s2 - 120*s3 + 3*s4) - s16*(360*s1 - 3*s2 - 240*s3 + 5*s4) + s12*(14400*s1 - 120*s2 - 14400*s3 + 240*s4) - s4*(28800*s1 - 240*s2 - 14400*s3 + 360*s4)]
[ (2874340168023969*s1)/70368744177664 + (2670370432474805*s9)/70368744177664 + s5*(240*s5 - 2*s6 - 120*s7 + 3*s8) - s13*(360*s5 - 3*s6 - 240*s7 + 5*s8) + s9*(14400*s5 - 120*s6 - 14400*s7 + 240*s8) - s1*(28800*s5 - 240*s6 - 14400*s7 + 360*s8), (2874340168023969*s2)/70368744177664 + (2874340168023969*s5)/70368744177664 + (2670370432474805*s7)/70368744177664 + (2670370432474805*s10)/70368744177664 + s6*(240*s5 - 2*s6 - 120*s7 + 3*s8) - s14*(360*s5 - 3*s6 - 240*s7 + 5*s8) + s10*(14400*s5 - 120*s6 - 14400*s7 + 240*s8) - s2*(28800*s5 - 240*s6 - 14400*s7 + 360*s8), (2874340168023969*s3)/70368744177664 + (2670370432474805*s11)/70368744177664 + s7*(240*s5 - 2*s6 - 120*s7 + 3*s8) - s15*(360*s5 - 3*s6 - 240*s7 + 5*s8) + s11*(14400*s5 - 120*s6 - 14400*s7 + 240*s8) - s3*(28800*s5 - 240*s6 - 14400*s7 + 360*s8), (2874340168023969*s4)/70368744177664 + (2740739176652469*s7)/70368744177664 + (2670370432474805*s12)/70368744177664 + s8*(240*s5 - 2*s6 - 120*s7 + 3*s8) - s16*(360*s5 - 3*s6 - 240*s7 + 5*s8) + s12*(14400*s5 - 120*s6 - 14400*s7 + 240*s8) - s4*(28800*s5 - 240*s6 - 14400*s7 + 360*s8)]
[ s5*(240*s9 - 2*s10 - 120*s11 + 3*s12) - s13*(360*s9 - 3*s10 - 240*s11 + 5*s12) + s9*(14400*s9 - 120*s10 - 14400*s11 + 240*s12) - s1*(28800*s9 - 240*s10 - 14400*s11 + 360*s12), (2874340168023969*s9)/70368744177664 + (2670370432474805*s11)/70368744177664 + s6*(240*s9 - 2*s10 - 120*s11 + 3*s12) - s14*(360*s9 - 3*s10 - 240*s11 + 5*s12) + s10*(14400*s9 - 120*s10 - 14400*s11 + 240*s12) - s2*(28800*s9 - 240*s10 - 14400*s11 + 360*s12), s7*(240*s9 - 2*s10 - 120*s11 + 3*s12) - s15*(360*s9 - 3*s10 - 240*s11 + 5*s12) + s11*(14400*s9 - 120*s10 - 14400*s11 + 240*s12) - s3*(28800*s9 - 240*s10 - 14400*s11 + 360*s12), (2740739176652469*s11)/70368744177664 + s8*(240*s9 - 2*s10 - 120*s11 + 3*s12) - s16*(360*s9 - 3*s10 - 240*s11 + 5*s12) + s12*(14400*s9 - 120*s10 - 14400*s11 + 240*s12) - s4*(28800*s9 - 240*s10 - 14400*s11 + 360*s12)]
[ (2740739176652469*s9)/70368744177664 + s5*(240*s13 - 2*s14 - 120*s15 + 3*s16) - s13*(360*s13 - 3*s14 - 240*s15 + 5*s16) + s9*(14400*s13 - 120*s14 - 14400*s15 + 240*s16) - s1*(28800*s13 - 240*s14 - 14400*s15 + 360*s16), (2740739176652469*s10)/70368744177664 + (2874340168023969*s13)/70368744177664 + (2670370432474805*s15)/70368744177664 + s6*(240*s13 - 2*s14 - 120*s15 + 3*s16) - s14*(360*s13 - 3*s14 - 240*s15 + 5*s16) + s10*(14400*s13 - 120*s14 - 14400*s15 + 240*s16) - s2*(28800*s13 - 240*s14 - 14400*s15 + 360*s16), (2740739176652469*s11)/70368744177664 + s7*(240*s13 - 2*s14 - 120*s15 + 3*s16) - s15*(360*s13 - 3*s14 - 240*s15 + 5*s16) + s11*(14400*s13 - 120*s14 - 14400*s15 + 240*s16) - s3*(28800*s13 - 240*s14 - 14400*s15 + 360*s16), (2740739176652469*s12)/70368744177664 + (2740739176652469*s15)/70368744177664 + s8*(240*s13 - 2*s14 - 120*s15 + 3*s16) - s16*(360*s13 - 3*s14 - 240*s15 + 5*s16) + s12*(14400*s13 - 120*s14 - 14400*s15 + 240*s16) - s4*(28800*s13 - 240*s14 - 14400*s15 + 360*s16)]
that is my left_ARE
in ARE
A^T.S + S.A. - S.B.R^-1.B^T.S + Q = 0
if i get the S matrix i can find K matrix and find the eigen value S matrix. I know K matrix can find with the K = lqr(A,B,Q,R), but i need S matrix to compare with K from the function, so i know the K is right with the eigenvalue from S matrix is all positive
Ivan Dwi Putra
Ivan Dwi Putra on 10 Jun 2020
in my graph that simulate the train without control LQR and in my LQRtry image with control lqr. The lqr control image still wrong, i want to the distance from x1 x3 is same after control same like x2 and x4.

Sign in to comment.

Answers (0)

Products


Release

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!