How to understand R of the regresion plot in neural network training?
1 view (last 30 days)
Show older comments
ANN structure is 3-3-4.The following is simple code input_train=[2,2,1,2,1,2,2,2,1,0.3,2,3.0,3.0,2,3.0; 16.6,14.6,15.79,14.6,13.4,14.6,14.6,14.6,13.4,14.6,12.6,13.4,15.8,14.6,13.4; 60,60,80,60,80,60,26.4,93.6,40.0,60,60,40.0,80,60,80]; output_train=[34.17,19.90,19.54,18.42,10.93,18.05,24.36,17.97,14.1,29.23,9.25,13.28,16.03,22.18,5.64; 14.27,16.85,13.680,17.46,15.03,15.68,23.45,13.64,16.84,4.86,29.94,24.90,15.17,13.24,33.78; 3.62,6.39,8.14,6.62,8.01,5.70,7.36,4.88,8.80,7.86,12.04,10.21,6.51,4.48,13.91; 4.88,3.35,2.67,3.22,1.64,2.83,4.98,2.45,2.38,1.42,2.77,3.31,2.43,2.94,1.91]; [inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train); net=newff(minmax(inputn),[3,4],{'tansig','logsig'},'traingdx'); net.trainParam.epochs=500; net.trainParam.goal=0.001; net.trainParam.max_fail=10; net=train(net,inputn,outputn); I can get the regression plot, ther is only one R. However,how can i get four correlation coefficient® of four objectives,respectivly?
0 Comments
Accepted Answer
ChristianW
on 26 Feb 2013
Edited: ChristianW
on 26 Feb 2013
y = sim(net,inputn);
r = regression(outputn,y); % r for every objective
R = regression(outputn(:)',y(:)'); % R from plot
or
r1_cc = corrcoef(outputn(1,:),y(1,:));
R_cc = corrcoef(outputn(:),y(:));
3 Comments
ChristianW
on 26 Feb 2013
I'm sorry, used worng sim()-input, its inputn not input_train. I'll edit my answer.
More Answers (0)
See Also
Categories
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!