My thought would be the lazy solution. If your model is:
((1-y)^(1-b)/y)=exp(-kt)
then log the model. That is, we know that
(1-b)*log(1-y) + k*t = log(y)
With one more step, this reduces to
-b*log(1-y) + k*t = log(y) - log(1-y)
You can compute the parameters k and b using a simple linear regression now. Thus, if y and t are column vectors, we have:
bk = [-log(1-y),t] \ (log(y) - log(1-y));
so bk is a vector of length 2, contining the estimates for b and k respectively. If you find that b or k are estimated to be something outside of the valid region, then I would first consider if this is a reasonable model, but then you could just use lsqlin to estimate them, since lsqlin does provide bound constraints.
0 Comments
Sign in to comment.