how to apply filter on .CSV data file
13 views (last 30 days)
Show older comments
i have a ECG raw data in .csv format.....but in data have some artifact noise so to remove these noise i have to use filter
1- how can i apply some filter in .csv format data
2- can we convert .csv ECG data into original singal format then we apply filter
i have sampling frequency, time duration of recording and filter values etc..
3 Comments
Jan
on 3 Feb 2021
@panakj tiwari: You can simply edit the text instead of appending a comment. I've fixed the typo for you.
Star Strider
on 3 Feb 2021
Filtering the noise depends entirely on what the noise is. You can use frequency-selective filters to remove band-limited noise (such as powerline frequency noise), however broadband noise requires wavelet denoising or the Savitzky-Golay filter. It is only possible to understand the kind of noise that exists by first taking the Fourier transform of the time-domain signal.
Answers (1)
Mathieu NOE
on 29 Jan 2021
hello
I assume you have a code to load the csv
from there you have to do signal frequency (fft) analysis and then decide which filter do you need
FYI, this is a code to help you do the fft analysis and shows and example of filter
you have to replace wav file loading with your own method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 4096; %
OVERLAP = 0.5;
% spectrogram dB scale
spectrogram_dB_scale = 80; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
% [data,Fs] = audioread('myWAVaudiofile.wav');
[data,Fs] = audioread('Immigran_Hiss.wav');
channel = 1;
signal = data(:,channel);
samples = length(signal);
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 1;
if decim>1
signal = decimate(signal,decim);
Fs = Fs/decim;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(1),plot(freq,sensor_spectrum_dB,'b');grid
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(signal,NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(fsg(2)-fsg(1)) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% removal of hiss between t = 0 and t = 1.68 s
% use of bandpass filter to remove noise below 500 and above 2500 Hz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data_filtered = data;
t_min = 0;
t_max = 1.68;
ind = 1+fix(t_min*Fs:t_max*Fs-1);
% keep only signal content extracted by bandpass filters
f_low = 500;
f_high = 2500;
N = 4;
% signal_filtered = zeros(size(signal));
[b,a] = butter(N,2/Fs*[f_low f_high]);
% now let's filter the signal
data_filtered(ind,:) = filtfilt(b,a,data(ind,:));
% save as wav file
audiowrite('Immigran_Hiss-filt.wav',data_filtered,Fs);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2B : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(data_filtered(:,1),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(3);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(fsg(2)-fsg(1)) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer overlap % (between 0 and 0.95)
samples = length(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,1);
s_tmp((1:samples)) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft)).*window;
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select);
freq_vector = (select - 1)*Fs/nfft;
end
2 Comments
Mathieu NOE
on 3 Feb 2021
ok , there are other (many) ways to smooth a signal , for example using movmean or sgolay ... depends on what is the issue is
you should explain in more details and maybe share some data
as Star Strider mentions, using filters requires first to understand in which frequency range the noise is mostly contributing , there my submission for spectral analysis (the file format is not the critical point here)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!