solving 2 ODE's - problem with ode45 initial conditions
3 views (last 30 days)
Show older comments
dx/dt=x(3-x-2y) dy/dt=y(2-x-y)
I'm trying to solve the two ODE's above and am struggling. Is it possible to solve them as two separate functions with two separate ode45 commands? I am under the impression that that is not possible, so I've combined them into one function like this:
function df=odefunc(t,f)
% function f represents both x(t) and y(t) as a system
df=zeros(2,1);
df(1)=f(1)*(3-f(1)-2*f(2)); %f(1)=x(t) ; df(1)=dx/dt
df(2)=f(2)*(2-f(1)-f(2)); %f(2)=y(t) ; df(2)=dy/dt
end
But then my other issue is that my initial conditions aren't at time t=0. They are x0=[5,2] and y0=[2,10]. So when I ran the ode45 command below, I got an error message regarding the initial conditions. Any help is appreciated-thanks!
[T,fXY]=ode45(@odefunc,[1,100],[5,2;2,10])
0 Comments
Answers (2)
Jan
on 26 Apr 2013
Edited: Jan
on 26 Apr 2013
x0 is the initial time, 1 in your case according to the time interval [1, 100]. When you want t0 = 0, you need [0, 100].
Now y0 must be a [2 x 1] vector with the initial position. I cannot understand, why there are 4 initial values in your case, but you need 2 only.
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!