Second-Order Matrix Differential Equation
4 views (last 30 days)
Show older comments
I am attempting to solve a second-order differential for a double spring-mass-damper system. I was able to work out the math and obtain the differential equation in the format Mx" = Kx' + Bx + F.
M,K,B and F are matrices.
M= [m1 0 0; 0 m2 0; 0 0 m3];
K= [-k1 k1 0; k1 -k1-k2 k2; 0 k2 -k2];
B= [-b1 b1 0; b1 -b1-b2 b2; 0 b2 -b2];
F= [f 0 0];
All variables inside the matrices are random integers. I attempted to approach this in Simulink and also as a system of first order differential but my knowledge in MATLAB was not sufficient to use it as a matrix.
Any help is much appreciated!
4 Comments
James Tursa
on 8 Mar 2021
What do you mean by "All variables inside the matrices are random integers"? That you are starting the system off with random parameters but these parameters remain fixed throughout the simulation? Or that you have some type of stochastic system where the parameters change randomly during the simulation?
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!