MATLAB Answers

Study of oscillations and how to solve in MATLAB

17 views (last 30 days)
Khang Ngo
Khang Ngo on 16 May 2021
The oscillation of any body due to elastic force can be described by the differential equation:
y''+b*y'+(w0^2)*y =F*cos(w*t)
In which, y is oscillation displacement, b is damped coefficient, w0 is angular frequency of free oscillation, w is angular frequency of stimulating force.
This project requires students to use Matlab to solve above equation to study harmonic oscillation (no damped, no stimulated force: b = F = 0), damped oscillation (b not equal 0, F = 0), stimulated oscilation (b not equal 0, F not equal 0).
- Examine the command dsolve to solve differential equation in MATLAB symbolic calculation.
- Write Matlab program to solve and plot the graph depending on time (with initial conditions y(0) = 5; y’(0) = 0):
a) harmonic oscillation (w0 = 3; b = F = 0; t = 20s)
b) damped oscillation (w0 = 10; b = 0.01, 0.1, 1.0, 10.0 ; F = 0; t = 20s) % many values of b
c) stimulated oscilation (w0 = 10; b = 0.1 ; F = 10; w= 10.0, 5.0, 3.0, 0.0; t = 150s ) % many values of w
- Discuss about the obtained results.
Please somebody can help me deal with this problem, and explain me why we have this solution, I am a newbie and trying to improve my skill day by day.Thank you.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!