Why this classification doesn`t work for tumor brain classification?

2 views (last 30 days)
in bellow code I have used strcmpi for comparing but it doesn`t compare according the features extractions, any one help?
signal1 = img2(:,:);
[cA1,cH1,cV1,cD1] = dwt2(signal1,'db4');
[cA2,cH2,cV2,cD2] = dwt2(cA1,'db4');
[cA3,cH3,cV3,cD3] = dwt2(cA2,'db4');
DWT_feat = [cA3,cH3,cV3,cD3];
G = pca(DWT_feat);
whos DWT_feat;
whos G;
g = graycomatrix(G);
stats = graycoprops(g,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(G);
Standard_Deviation = std2(G);
Entropy = entropy(G);
RMS = mean2(rms(G));
Skewness = skewness(img);
Variance = mean2(var(double(G)));
a = sum(double(G(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(G(:)));
Skewness = skewness(double(G(:)));
% Inverse Difference Movement
m = size(G,1);
n = size(G,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = G(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
%% Classification
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
load Trainset.mat
xdata = meas;
group = label;
species = fitcsvm(xdata,group,'HyperparameterOptimizationOptions',struct('showplot',true),'kernelfunction', 'linear','KernelScale',0.5);
species = fitcsvm(xdata,group,'HyperparameterOptimizationOptions',struct('showplot',true));
if strcmpi(species,'MALIGNANT')
helpdlg(' Malignant Tumor ');
disp(' Malignant Tumor ');
elseif strcmpi(species,'BENIGN')
helpdlg(' Benign Tumor ');
disp(' Benign Tumor ');
else
helpdlg('not clear')
end

Answers (0)

Categories

Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange

Products


Release

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!