Applying vectorization techniques to speedup the performance of dividing a 3D matrix by a 2D matrix
1 view (last 30 days)
Show older comments
Matthew Kehoe
on 29 Jul 2021
Commented: Matthew Kehoe
on 31 Jul 2021
I'm working on removing a for loop in my Matlab code to improve performance. My original code has one for loop (from j=1:Nx) that is harmful to performance (in my production code, this for loop is processed over 20 million times if I test large simulations). I am curious if I can remove this for loop through vectorization, repmat, or a similar technique. My original Matlab implementation is given below.
clc; clear all;
% Test Data
% I'm trying to remove the for loop for j in the code below
N = 10;
M = 10;
Nx = 32; % Ny=Nx=Nz
Nz = 32;
Ny = 32;
Fnmhat = rand(Nx,Nz+1);
Jnmhat = rand(Nx,1);
xi_n_m_hat = rand(Nx,N+1,M+1);
Uhat = zeros(Nx,Nz+1);
Uhat_2 = zeros(Nx,Nz+1);
identy = eye(Ny+1,Ny+1);
p = rand(Nx,1);
gammap = rand(Nx,1);
D = rand(Nx+1,Ny+1);
D2 = rand(Nx+1,Ny+1);
D_start = D(1,:);
D_end = D(end,:);
gamma = 1.5;
alpha = 0; % this could be non-zero
ntests = 100;
% Original Code (Partially vectorized)
tic
for n=0:N
for m=0:M
b = Fnmhat.';
alphaalpha = 1.0;
betabeta = 0.0; % this could be non-zero
gammagamma = gamma*gamma - p.^2 - 2*alpha.*p; % size (Nx,1)
d_min = 1.0;
n_min = 0.0; % this could be non-zero
r_min = xi_n_m_hat(:,n+1,m+1);
d_max = -1i.*gammap;
n_max = 1.0;
r_max = Jnmhat;
A = alphaalpha*D2 + betabeta*D + permute(gammagamma,[3,2,1]).*identy;
A(end,:,:) = repmat(n_min*D_end,[1,1,Nx]);
b(end,:) = r_min;
A(end,end,:) = A(end,end,:) + d_min;
A(1,:,:) = repmat(n_max*D_start,[1,1,Nx]);
A(1,1,:) = A(1,1,:) + permute(d_max,[2,3,1]);
b(1,:) = r_max;
% Non-vectorized code - can this part be vectorized?
for j=1:Nx
utilde = linsolve(A(:,:,j),b(:,j)); % A\b
Uhat(j,:) = utilde.';
end
end
end
toc
Here is my attempt at vectorizing the code (and removing the for loop for j).
% Same test data as original code
% New Code (completely vectorized but incorrect)
tic
for n=0:N
for m=0:M
b = Fnmhat.';
alphaalpha = 1.0;
betabeta = 0.0; % this could be non-zero
gammagamma = gamma*gamma - p.^2 - 2*alpha.*p; % size (Nx,1)
d_min = 1.0;
n_min = 0.0; % this could be non-zero
r_min = xi_n_m_hat(:,n+1,m+1);
d_max = -1i.*gammap;
n_max = 1.0;
r_max = Jnmhat;
A2 = alphaalpha*D2 + betabeta*D + permute(gammagamma,[3,2,1]).*identy;
A2(end,:,:) = repmat(n_min*D_end,[1,1,Nx]);
b(end,:) = r_min;
A2(end,end,:) = A2(end,end,:) + d_min;
A2(1,:,:) = repmat(n_max*D_start,[1,1,Nx]);
A2(1,1,:) = A2(1,1,:) + permute(d_max,[2,3,1]);
b(1,:) = r_max;
% Non-vectorized code - can this part be vectorized?
%for j=1:Nx
% utilde_2 = linsolve(A2(:,:,j),b(:,j)); % A2\b
% Uhat_2(j,:) = utilde_2.';
%end
% My attempt - this doesn't work since I don't loop through the index j
% in repmat
utilde_2 = squeeze(repmat(linsolve(A2(:,:,Nx),b(:,Nx)),[1,1,Nx]));
utilde_2 = utilde_2(:,1);
Uhat_2 = squeeze(repmat(utilde_2',[1,1,Nx]));
Uhat_2 = Uhat_2';
end
end
toc
diff = norm(Uhat - Uhat_2,inf); % is 0 if correct
I'm curious if repmat (or a different builtin Matlab function) can speed up this part of the code:
for j=1:Nx
utilde = linsolve(A(:,:,j),b(:,j)); % A\b
Uhat(j,:) = utilde.';
end
Is the for loop for j absolutely necessary or can it be removed?
Accepted Answer
Bruno Luong
on 29 Jul 2021
If you have C compilers the fatest methods are perhaps mmx and MultipleQR avaikable on FEX
9 Comments
Bruno Luong
on 30 Jul 2021
MMX and MultipleQRSolve make parallel loop on page, MATLAB for-loop make parallize on the algorithm of linsolve.
That's why the matrix size matters, and possibly the number of the physical processor cores.
MultipleQRSolve is less efficient for larg matrix because my implementation of QR is less efficient than the Lapack function called by MMX and MATLAB native for-loop.
More Answers (2)
Matt J
on 29 Jul 2021
Edited: Matt J
on 29 Jul 2021
Another idea.
clc; clear all;
% Test Data
% I'm trying to remove the for loop for j in the code below
N = 10;
M = 10;
Nx = 32; % Ny=Nx=Nz
Nz = 32;
Ny = 32;
AA=kron(speye(Nx),ones(Nx+1));
map=logical(AA);
% Original Code (Partially vectorized)
tic
for n=0:N
for m=0:M
....
%Vectorized code
AA(map)=A(:);
Uhat=reshape(AA\b(:),Nx+1,Nx).';
end
end
toc
5 Comments
Bruno Luong
on 29 Jul 2021
AA(map)=A2(:)
Well, I know someone who is wonder why (:) can be much slower than reshape. ;-)
Matt J
on 29 Jul 2021
Yeah, I didn't see that A was complex-valued. So,
AA(map)=rehape(A,[],1);
Uhat=reshape(AA\b(:),Nx+1,Nx).';
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!