Special Trans Function

Version 1.0.0 (8.1 KB) by Gao
Calculates the analytical or numerical solution of Special Trans Function
6 Downloads
Updated 20 May 2024

View License

Special Trans Function (STF) is the exact analytical closed-form solution of transcendental equation:
Psi = U.*exp(-Psi) U(ζ)∈R+.
For the fixed variable x, STF takes the form of analytic expression:
Psi(x,U) = U.*(symsum((U.^n.*(x-n).^n)/factorial(n),n,[0 floor(x)]))./symsum((U.^n.*(x+1-n).^n)/factorial(n),n,[0 floor(x+1)]);
Psi = STF(x,U) calculates the analytical solution of STF by invoking STF1.m (faster than symbolic/limit computation) or STF2.m (fastest).
Psi = STF(U) solves the numerical solution of STF by invoking STF3.
[Psi,xv,xs] = STF(U) invokes STF4.m to solve the numerical solution of STF and the vectorial STF brabch xv around start point xs.
Inputs:
- x: The STF branch, a non-negative scalar value within [0,20]. For double-precision arithmetic, the analytical solution of STF is exact when x∈[0,20] since factorial(n) is exact when n ≤ 21.
- U: A vector of non-negative numbers, U(ζ)∈[0,inf).
- options: defaultopts = struct('Solution','Analytical','Speed','fast'),
struct('Solution','Numerical','Speed','faster'),
Output:
- Psi: The analytical/numerical solution of STF.
- xv: The numerical solution of vectorial STF brabch around x
Example:
x = 2.5;
U = 0:10;
STF(U)
Psi = STF(U)
[Psi,xv] = STF(U)
STF(x, U)
Psi = STF(x, U)
[Psi,xv] = STF(x, U)
opts = struct('Solution','Analytical','Speed','fast');
STF(x, U, opts)
Psi = STF(x, U, opts)
[Psi,xv] = STF(x, U, opts)
opts = struct('Solution','Analytical','Speed','faster');
STF(x, U, opts)
Psi = STF(x, U, opts)
[Psi,xv] = STF(x, U, opts)
opts = struct('Solution','Numerical');
STF(x, U, opts)
Psi = STF(x, U, opts)
[Psi,xv] = STF(x, U, opts)
References:
[1] Perovich SM, Simic SK, Tosic D V, Bauk SI. On the analytical solution of some families of transcendental equations. Appl Math Lett 2007;20:493–8. https://doi.org/10.1016/j.aml.2006.06.008.
Author: Xiankun Gao, gaoxiankun78@163.com

Cite As

Gao (2025). Special Trans Function (https://ch.mathworks.com/matlabcentral/fileexchange/166141-special-trans-function), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2021b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0