The Spherical K-means algorithm
Clustering is one of the most important data mining techniques used to extract useful information
from microarray data. Microarray data sets can be either clustered by samples or by genes. In this
research we focus on the gene clustering problem. The objective of gene clustering is to group genes with
similar expression patterns together with the common belief that those genes often have similar functions,
participate in a particular pathway or response to a common environmental stimulus. Although hundreds
of clustering algorithms exist, the very simple K-means and its variants remain among the most widely
used algorithms for gene clustering by biologists and practitioners. This surprising fact may be attributed
to its especial ease of implementation and use.
When microarray data are normalized to zero mean and unit norm, a variant of the K-means algorithm that works with the normalized data would be more suitable. Since the data points are on a unit hypersphere, the algorithm is called
the Spherical K-means algorithm (SPK-means).
Cite As
Xuan Vinh Nguyen (2023). The Spherical K-means algorithm (https://www.mathworks.com/matlabcentral/fileexchange/32987-the-spherical-k-means-algorithm), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
SPKmeans/
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |