Demystifying Deep Learning: Semantic Segmentation and Deployment
Overview
Deep learning can achieve state-of-the-art accuracy for many tasks considered algorithmically unsolvable using traditional machine learning, including classifying objects in a scene or recognizing optimal paths in an environment. In this webinar, we’ll decipher practical knowledge of the domain of deep learning, and demonstrate new MATLAB features that simplify these tasks and eliminate the low-level programming. From prototype to production: we’ll build and train neural networks, and discuss automatically converting a model to CUDA to run natively on GPUs.
Note: This webinar builds on concepts previously discussed in the Deep Learning for Computer Vision webinar.
Highlights
- Perform pixel-level semantic segmentation on images
- Import and use pre-trained models from TensorFlow and Caffe
- Speed up network training with parallel computing on a cluster
- Use data augmentation to increase the accuracy of a deep learning model
- Automatically convert a model to CUDA to run on GPUs
About the Presenters
Abhijit Bhattacharjee is a Senior Application Engineer at MathWorks, specializing in the areas of computer vision, audio signal processing, and machine learning. Prior to MathWorks, Abhijit was a researcher at USC Information Sciences Institute, working in programs funded by NASA and DARPA. Projects included hyperspectral image processing and audio steganography. He holds an M.S.E.E. degree from the University of Southern California and works with clients in all industries, including consumer devices, semiconductors, government, and academic.
Pitambar Dayal is a Technical Marketing Manager for MathWorks Image Processing and Computer Vision products. Prior to MathWorks, Pitambar earned his B.S. studying Biomedical Engineering at NJIT and working in a brain-imaging lab, where he researched fMRI patterns in ischemic stroke patients (using MATLAB, of course). Outside of work, Pitambar spends his time traveling, watching basketball, and playing ultimate frisbee. His favorite food is Margherita Pizza and his favorite dessert is Belgian waffles.
Recorded: 26 Jul 2018
Featured Product
Computer Vision Toolbox
Up Next:
Related Videos:
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)