# lstm

## Syntax

## Description

The long short-term memory (LSTM) operation allows a network to learn long-term dependencies between time steps in time series and sequence data.

**Note**

This function applies the deep learning LSTM operation to `dlarray`

data. If
you want to apply an LSTM operation within a `layerGraph`

object
or `Layer`

array, use
the following layer:

applies a long short-term memory (LSTM) calculation to input `Y`

= lstm(`X`

,`H0`

,`C0`

,`weights`

,`recurrentWeights`

,`bias`

)`X`

using the
initial hidden state `H0`

, initial cell state `C0`

, and
parameters `weights`

, `recurrentWeights`

, and
`bias`

. The input `X`

must be a formatted
`dlarray`

. The output `Y`

is a formatted
`dlarray`

with the same dimension format as `X`

, except
for any `'S'`

dimensions.

The `lstm`

function updates the cell and hidden states using the
hyperbolic tangent function (tanh) as the state activation function. The
`lstm`

function uses the sigmoid function given by $$\sigma (x)={(1+{e}^{-x})}^{-1}$$ as the gate activation function.

`[`

also returns the hidden state and cell state after the LSTM operation.`Y`

,`hiddenState`

,`cellState`

] = lstm(`X`

,`H0`

,`C0`

,`weights`

,`recurrentWeights`

,`bias`

)

`[___] = lstm(___,'DataFormat',`

also specifies the dimension format `FMT`

)`FMT`

when `X`

is not
a formatted `dlarray`

. The output `Y`

is an unformatted
`dlarray`

with the same dimension order as `X`

, except
for any `'S'`

dimensions.

## Examples

## Input Arguments

## Output Arguments

## More About

## Extended Capabilities

## Version History

**Introduced in R2019b**

## See Also

`dlarray`

| `fullyconnect`

| `softmax`

| `dlgradient`

| `dlfeval`

| `gru`

| `attention`