Binary
Binary instrument object
Description
Create and price a Binary instrument object for one or more
Binary instruments using this workflow:
Use
fininstrumentto create aBinaryinstrument object for one or more Binary instruments.Use
finmodelto specify aBlackScholes,RoughBergomi,RoughHeston, orBacheliermodel for theBinaryinstrument object.Choose a pricing method.
When using a
BlackScholesmodel, usefinpricerto specify aBlackScholesorAssetMonteCarlopricing method for one or moreBinaryinstruments.When using a
RoughBergomiorRoughHestonmodel, usefinpricerto specify aRoughVolMonteCarlopricing method for one or moreBinaryinstruments.When using a
Bacheliermodel, usefinpricerto specify anAssetMonteCarlopricing method for one or moreBinaryinstruments.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available models and pricing methods for a
Binary instrument, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates a BinaryOpt = fininstrument(InstrumentType,'Strike',strike_value,'ExerciseDate',exercise_date,'PayoffValue',payoff_value)Binary instrument object for one or more Binary
instruments by specifying InstrumentType and sets properties using the
required name-value pair arguments Strike,
ExerciseDate, and
PayoffValue.
sets optional properties using
additional name-value pair arguments in addition to the required arguments
in the previous syntax. For example, BinaryOpt = fininstrument(___,Name,Value)BinaryOpt =
fininstrument("Binary",'Strike',100,'ExerciseDate',datetime(2019,1,30),'PayoffValue',110,'OptionType',"put",'Name',"binary_option")
creates a Binary put option with a
PayoffValue of 110. You can specify multiple
name-value pair arguments.
Input Arguments
Instrument type, specified as a string with the value of
"Binary", a character vector with the value of
'Binary', an
NINST-by-1 string array with
values of "Binary", or an
NINST-by-1 cell array of
character vectors with values of 'Binary'.
Data Types: char | cell | string
Name-Value Arguments
Specify required
and optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is
the corresponding value. Name-value arguments must appear after other arguments,
but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: BinaryOpt =
fininstrument("Binary",'Strike',100,'ExerciseDate',datetime(2019,1,30),'PayoffValue',110,'OptionType',"put",'Name',"binary_option")
Required Binary Name-Value Pair Arguments
Option strike price value, specified as the comma-separated pair
consisting of 'Strike' and a scalar nonnegative
value or an NINST-by-1 vector
of nonnegative values.
Data Types: double
Option exercise date, specified as the comma-separated pair
consisting of 'ExerciseDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, Binary also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the ExerciseDate property is stored as a
datetime.
Option payoff value, specified as the comma-separated pair
consisting of 'PayoffValue' and a scalar numeric
value or an NINST-by-1 numeric
vector.
Data Types: double
Optional Binary Name-Value Pair Arguments
Option type, specified as the comma-separated pair consisting of
'OptionType' and a scalar string or character
vector or an NINST-by-1 cell
array of character vectors or string array.
A call option pays out if the condition is met and the price of the underlying asset is above the specified level at expiration. A put option pays out if the condition is met and the price of the underlying asset is below the specified level at expiration.
Data Types: char | cell | string
Option exercise style, specified as the comma-separated pair
consisting of 'ExerciseStyle' and a scalar string
or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Data Types: string | char | cell
User-defined name for the instrument, specified as the
comma-separated pair consisting of 'Name' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Data Types: char | cell | string
Output Arguments
Binary instrument, returned as a Binary
object.
Properties
Option strike price value, returned as a scalar nonnegative value or an
NINST-by-1 vector of nonnegative
values.
Data Types: double
Option exercise date, returned as a datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Option payoff value, returned as a scalar numeric value or an
NINST-by-1 vector of numeric
values.
Data Types: double
Option type, returned as a scalar string or an
NINST-by-1 string array with the
values of "call" or "put".
Data Types: string
This property is read-only.
Option exercise style, returned as a scalar string or an
NINST-by-1 string array with the
value of "European".
Data Types: string
User-defined name for the instrument, returned as a scalar string or an
NINST-by-1 string array.
Data Types: string
Examples
This example shows the workflow to price a Binary instrument when you use a BlackScholes model and an AssetMonteCarlo pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))
outPricer =
GBMMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 102
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.BlackScholes]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,["all"])Price = 113.0166
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
______ _____ _____ ______ _______ ______ ____
113.02 0 0 0 -451.98 3.9582 0
Since R2024a
This example shows the workflow to price a Binary instrument when you use a RoughBergomi model and a RoughVolMonteCarlo pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",ExerciseDate=datetime(2022,9,15),Strike=1000,PayoffValue=130,OptionType="put",Name="binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create RoughBergomi Model Object
Use finmodel to create a RoughBergomi model object.
RoughBergomiModel = finmodel("RoughBergomi",Alpha=-0.32, Xi=0.1,Eta=0.003,RhoSV=0.9)RoughBergomiModel =
RoughBergomi with properties:
Alpha: -0.3200
Xi: 0.1000
Eta: 0.0030
RhoSV: 0.9000
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create RoughVolMonteCarlo Pricer Object
Use finpricer to create a RoughVolMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value argument.
outPricer = finpricer("RoughVolMonteCarlo",DiscountCurve=myRC,Model=RoughBergomiModel,SpotPrice=102,simulationDates=datetime(2022,9,15))outPricer =
RoughBergomiMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 102
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.RoughBergomi]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,"all")Price = 112.9036
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
_____ _____ _____ ______ _______ ______ ____
112.9 0 0 0 -451.52 3.9542 0
Since R2024b
This example shows the workflow to price a Binary instrument when you use a RoughHeston model and a RoughVolMonteCarlo pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",ExerciseDate=datetime(2022,9,15),Strike=1000,PayoffValue=130,OptionType="put",Name="binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create RoughHeston Model Object
Use finmodel to create a RoughHeston model object.
RoughBergomiModel = finmodel("RoughHeston",V0=0.4,ThetaV=0.3,Kappa=0.2,SigmaV=0.1,Alpha=-0.02,RhoSV=0.3)RoughBergomiModel =
RoughHeston with properties:
Alpha: -0.0200
V0: 0.4000
ThetaV: 0.3000
Kappa: 0.2000
SigmaV: 0.1000
RhoSV: 0.3000
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create RoughVolMonteCarlo Pricer Object
Use finpricer to create a RoughVolMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value argument.
outPricer = finpricer("RoughVolMonteCarlo",DiscountCurve=myRC,Model=RoughBergomiModel,SpotPrice=102,simulationDates=datetime(2022,9,15))outPricer =
RoughHestonMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 102
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.RoughHeston]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,"all")Price = 111.8864
outPR =
priceresult with properties:
Results: [1×8 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×8 table
Price Delta Gamma Lambda Rho Theta Vega VegaLT
______ _____ _____ ______ _______ ______ ____ ______
111.89 0 0 0 -447.46 3.9186 0 0
This example shows the workflow to price a Binary instrument when you use a BlackScholes model and an AssetMonteCarlo pricing method with quasi-Monte Carlo simulation.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value argument and use the name-value arguments for MonteCarloMethod and BrownianMotionMethod.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15),'NumTrials',1e3, ... 'MonteCarloMethod',"quasi",'BrownianMotionMethod',"brownian-bridge")
outPricer =
GBMMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 102
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.BlackScholes]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "quasi"
BrownianMotionMethod: "brownian-bridge"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,"all")Price = 113.0166
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
______ _____ _____ ______ _______ ______ ____
113.02 0 0 0 -451.98 3.9582 0
This example shows the workflow to price multiple Binary instruments when you use a BlackScholes model and a BlackScholes pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object with three Binary instruments.
BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'Strike',[1000 ; 2000 ; 3000],'PayoffValue',130,'OptionType',"put",'Name',"binary_option")
BinaryOpt=3×1 Binary array with properties:
OptionType
ExerciseDate
Strike
PayoffValue
ExerciseStyle
Name
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2800
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create BlackScholes Pricer Object
Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',800,'DividendValue',0.045)
outPricer =
BlackScholes with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 800
DividendValue: 0.0450
DividendType: "continuous"
Price Binary Instruments
Use price to compute the prices and sensitivities for the Binary instruments.
[Price, outPR] = price(outPricer,BinaryOpt,["all"])Price = 3×1
87.4005
109.9703
111.9328
outPR=3×1 priceresult array with properties:
Results
PricerData
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
_____ _________ ___________ _______ _______ ______ _______
87.4 -0.075973 -3.1264e-05 -0.6954 -23.084 3.2599 -592.61
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ _________ ___________ ________ _______ ______ _______
109.97 -0.014137 -4.4054e-05 -0.10284 -32.196 4.8405 -495.01
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ __________ __________ _________ _______ ______ _______
111.93 -0.0027668 -1.279e-05 -0.019775 -9.4868 4.2144 -475.57
This example shows the workflow to price a Binary instrument when you use a Merton model and an AssetMonteCarlo pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create Merton Model Object
Use finmodel to create a Merton model object.
MertonModel = finmodel("Merton",'Volatility',0.45,'MeanJ',0.02,'JumpVol',0.07,'JumpFreq',0.09)
MertonModel =
Merton with properties:
Volatility: 0.4500
MeanJ: 0.0200
JumpVol: 0.0700
JumpFreq: 0.0900
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",MertonModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))
outPricer =
MertonMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 102
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.Merton]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,["all"])Price = 112.4515
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
______ _____ _____ ______ _______ ______ ____
112.45 0 0 0 -449.72 3.9384 0
This example shows the workflow to price a Binary instrument when you use a Bachelier model and an AssetMonteCarlo pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create Bachelier Model Object
Use finmodel to create a Bachelier model object.
BachelierModel = finmodel("Bachelier",'Volatility',.2)
BachelierModel =
Bachelier with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BachelierModel,'SpotPrice',102,'simulationDates',datetime(2022,9,15))
outPricer =
BachelierMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 102
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.Bachelier]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,["all"])Price = 113.0166
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
______ _____ _____ ______ _______ ______ ____
113.02 0 0 0 -451.98 3.9582 0
This example shows the workflow to price a Binary instrument when you use a BlackScholes model and a BlackScholes pricing method.
Create Binary Instrument Object
Use fininstrument to create a Binary instrument object.
BinaryOpt = fininstrument("Binary",'ExerciseDate',datetime(2022,9,15),'Strike',1000,'PayoffValue',130,'OptionType',"put",'Name',"binary_option")
BinaryOpt =
Binary with properties:
OptionType: "put"
ExerciseDate: 15-Sep-2022
Strike: 1000
PayoffValue: 130
ExerciseStyle: "european"
Name: "binary_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.28)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2800
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create BlackScholes Pricer Object
Use finpricer to create a BlackScholes pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("analytic",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',800,'DividendValue',0.045)
outPricer =
BlackScholes with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 800
DividendValue: 0.0450
DividendType: "continuous"
Price Binary Instrument
Use price to compute the price and sensitivities for the Binary instrument.
[Price, outPR] = price(outPricer,BinaryOpt,["all"])Price = 87.4005
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: []
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
_____ _________ ___________ _______ _______ ______ _______
87.4 -0.075973 -3.1264e-05 -0.6954 -23.084 3.2599 -592.61
More About
A binary option is where the buyer receives a payout or loses their investment, depending on whether the option expires in the money.
A binary option is typically based on an underlying asset, such as stocks, currencies, commodities, or market indices. The option's value is derived from the price movement of the underlying asset.
Binary options depend on the outcome of a "yes or no" proposition, hence the name "binary." Binary options have an expiry date and/or time. At the time of expiry, the price of the underlying asset must be on the correct side of the strike price (based on the trade taken) for the trader to make a profit.
A binary option automatically exercises, meaning the gain or loss on the trade is automatically credited or debited to the trader's account when the option expires.
Version History
Introduced in R2020bThe Binary instrument object supports pricing with a RoughHeston model and
a RoughVolMonteCarlo pricing method.
The Binary instrument object supports pricing with a RoughBergomi model
and a RoughVolMonteCarlo pricing method.
Although Binary supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)