Tall arrays are too large to fit in memory, so it is common to view subsets of the data rather than the entire array. This page shows techniques to extract and view portions of a tall array.

Use the `head`

function
to extract the first rows in a tall array. `head`

does
not force evaluation of the array, so you must use `gather`

to
view the result.

tt = tall(table(randn(1000,1),randn(1000,1),randn(1000,1)))

tt = 1,000×3 tall table Var1 Var2 Var3 ________ ________ ________ 0.53767 0.6737 0.29617 1.8339 -0.66911 1.2008 -2.2588 -0.40032 1.0902 0.86217 -0.6718 -0.3587 0.31877 0.57563 -0.12993 -1.3077 -0.77809 0.73374 -0.43359 -1.0636 0.12033 0.34262 0.55298 1.1363 : : : : : :

t_head = gather(head(tt))

t_head = 8×3 table Var1 Var2 Var3 ________ ________ ________ 0.53767 0.6737 0.29617 1.8339 -0.66911 1.2008 -2.2588 -0.40032 1.0902 0.86217 -0.6718 -0.3587 0.31877 0.57563 -0.12993 -1.3077 -0.77809 0.73374 -0.43359 -1.0636 0.12033 0.34262 0.55298 1.1363

Similarly, you can use the `tail`

function
to extract the bottom rows in a tall array.

t_tail = gather(tail(tt))

t_tail = 8×3 table Var1 Var2 Var3 ________ ________ ________ 0.64776 0.47349 -0.27077 -0.31763 1.3656 0.43966 1.769 -1.6378 -0.50614 1.5106 2.0237 -0.18435 0.16401 0.77779 0.402 -0.28276 -0.5489 0.53923 1.1522 -0.12601 -0.73359 -1.1465 0.29958 -0.26837

All tall arrays support parentheses indexing. When you index a tall array using parentheses,
such as `T(A)`

or `T(A,B)`

, the result is a new tall array
containing only the specified rows and columns (or variables). Like most other operations on
tall arrays, indexing expressions are not evaluated immediately. You must use
`gather`

to evaluate the indexing operation. For more information, see
Deferred Evaluation of Tall Arrays.

You can perform these types of indexing in the first dimension of a tall array:

`B = A(:,…)`

, where`:`

selects all rows in`A`

.`B = A(idx,…)`

, where`idx`

is a tall numeric column vector or non-tall numeric vector.`B = A(L,…)`

, where`L`

is a tall or non-tall logical array of the same height as`A`

. For example, you can use relational operators, such as`tt(tt.Var1 < 10,:)`

.`B = A(P:D:Q,…)`

or`B = A(P:Q,…)`

, where`P:D:Q`

and`P:Q`

are valid`colon`

indexing expressions.`head(tt,k)`

provides a shortcut for`tt(1:k,:)`

.`tail(tt,k)`

provides a shortcut for`tt(end-k:end,:)`

.

Additionally, the number of subscripts you must specify depends on how many dimensions the array has:

For tall column vectors, you can specify a single subscript such as

`t(1:10)`

.For tall row vectors, tall tables, and tall timetables, you must specify two subscripts.

For tall arrays with two or more dimensions, you must specify two or more subscripts. For example, if the array has three dimensions, you can use an expression such as

`tA(1:10,:,:)`

or`tA(1:10,:)`

, but not linear indexing expressions such as`tA(1:10)`

or`tA(:)`

.

The `find`

function locates nonzero elements in
tall column vectors, and can be useful to generate a vector of indices for elements that
meet particular conditions. For example, `k = find(X<0)`

returns the
linear indices for all negative elements in `X`

.

For example, use parentheses indexing to retrieve the first
ten rows of `tt`

.

tt(1:10,:)

ans = 10×3 tall table Var1 Var2 Var3 ________ ________ ________ 0.53767 0.6737 0.29617 1.8339 -0.66911 1.2008 -2.2588 -0.40032 1.0902 0.86217 -0.6718 -0.3587 0.31877 0.57563 -0.12993 -1.3077 -0.77809 0.73374 -0.43359 -1.0636 0.12033 0.34262 0.55298 1.1363 : : : : : :

Retrieve the last 5 values of the table variable `Var1`

.

`tt(end-5:end,'Var1')`

ans = 6×1 tall table Var1 ________ 1.769 1.5106 0.16401 -0.28276 1.1522 -1.1465

Retrieve every 100th row from the tall table.

tt(1:100:end,:)

ans = 10×3 tall table Var1 Var2 Var3 _________ _________ ________ 0.53767 0.6737 0.29617 0.84038 -0.041663 -0.52093 0.18323 1.3419 0.052993 0.079934 -0.40492 -1.6163 0.26965 -1.5144 0.98399 -0.079893 -1.6848 -0.91182 0.47586 -2.1746 1.1754 1.9085 -0.79383 0.18343 : : : : : :

The variables in a tall table or tall timetable are each tall arrays of different
underlying data types. Standard indexing methods of tables and timetables also apply to tall
tables and tall timetables, including the use of `timerange`

, `withtol`

, and `vartype`

.

For example, index a tall table using dot notation `T.VariableName`

to
retrieve a single variable of data as a tall array.

tt.Var1

ans = 1,000×1 tall double column vector 0.5377 1.8339 -2.2588 0.8622 0.3188 -1.3077 -0.4336 0.3426 : :

Use tab completion to look up the variables in a table if you
cannot remember a precise variable name. For example, type `tt.`

and then press **Tab**.
A menu pops up:

You can also perform multiple levels of indexing. For example,
extract the first 5 elements in the variable `Var2`

.
In this case you must use one of the supported forms of indexing for
tall arrays in the parentheses.

tt.Var2(1:5)

ans = 5×1 tall double column vector 0.6737 -0.6691 -0.4003 -0.6718 0.5756

See Access Data in Tables or Select Timetable Data by Row Time and Variable Type for more indexing information.

In order to concatenate two or more tall arrays, as in `[A1 A2 A3 …]`

,
each of the tall arrays must be derived from a single tall array and must not have been
indexed differently in the first dimension. Indexing operations include functions such as
`vertcat`

, `splitapply`

, `sort`

,
`cell2mat`

, `synchronize`

,
`retime`

, and so on.

For example, concatenate a few columns from `tt`

to create a new tall
matrix.

[tt.Var1 tt.Var2]

ans = 1,000×2 tall double matrix 0.5377 0.6737 1.8339 -0.6691 -2.2588 -0.4003 0.8622 -0.6718 0.3188 0.5756 -1.3077 -0.7781 -0.4336 -1.0636 0.3426 0.5530 : : : :

To combine tall arrays with different underlying datastores, it is recommended that you
use `write`

to write the arrays (or calculation
results) to disk, and then create a new datastore referencing those locations:

files = {'folder/path/to/file1','folder/path/to/file2'}; ds = datastore(files);

The same subscripting rules apply whether you use indexing to assign or delete elements from a
tall array. Deletion is accomplished by assigning one or more elements to the empty matrix,
`[]`

.

You can assign elements into a tall array using the general syntax ```
A(m,n,...) =
B
```

. The tall array `A`

must exist. The first subscript
`m`

must be either a colon `:`

or a tall logical
vector. With this syntax, `B`

can be:

Scalar

A tall array derived from

`A(m,…)`

where`m`

is the same subscript as above. For example,`A(m,1:10)`

.An empty matrix,

`[]`

(for deletion)

For table indexing using the syntax `A.Var1 = B`

,
the array `B`

must be a tall array with the appropriate
number of rows. Typically, `B`

is derived from existing
data in the tall table. `Var1`

can be either a new
or existing variable in the tall table.

You cannot assign tall arrays as variables in a regular table, even if the table is empty.

Sorting all of the data in a tall array can be an expensive calculation. Most often, only a subset of rows at the beginning or end of a tall array is required to answer questions like “What is the first row in this data by year?”

The `topkrows`

function
returns a specified number of rows in sorted order for this purpose.
For example, use `topkrows`

to extract the top
12 rows sorted in descending order by the second column.

t_top12 = gather(topkrows(tt,12,2))

Evaluating tall expression using the Local MATLAB Session: Evaluation completed in 0.067 sec t_top12 = 12×3 table Var1 Var2 Var3 ________ ______ ________ -1.0322 3.5699 -1.4689 1.3312 3.4075 0.17694 -0.27097 3.1585 0.50127 0.55095 2.9745 1.382 0.45168 2.9491 -0.8215 -1.7115 2.7526 -0.3384 -0.21317 2.7485 1.9033 -0.43021 2.7335 0.77616 -0.59003 2.7304 0.67702 0.47163 2.7292 0.92099 -0.47615 2.683 -0.26113 0.72689 2.5383 -0.57588

The `summary`

function returns useful information
about each variable in a tall table or timetable, such as the minimum and maximum values of
numeric variables, and the number of occurrences of each category for categorical
variables.

For example, create a tall table for the `outages.csv`

data
set and display the summary information. This data set contains numeric,
datetime, and categorical variables.

fmts = {'%C' '%D' '%f' '%f' '%D' '%C'}; ds = datastore('outages.csv','TextscanFormats',fmts); T = tall(ds); summary(T)

Evaluating tall expression using the Local MATLAB Session: - Pass 1 of 2: Completed in 0.16 sec - Pass 2 of 2: Completed in 0.19 sec Evaluation completed in 0.46 sec Variables: Region: 1,468×1 categorical Values: MidWest 142 NorthEast 557 SouthEast 389 SouthWest 26 West 354 OutageTime: 1,468×1 datetime Values: Min 2002-02-01 12:18 Max 2014-01-15 02:41 Loss: 1,468×1 double Values: Min 0 Max 23418 NumMissing 604 Customers: 1,468×1 double Values: Min 0 Max 5.9689e+06 NumMissing 328 RestorationTime: 1,468×1 datetime Values: Min 2002-02-07 16:50 Max 2042-09-18 23:31 NumMissing 29 Cause: 1,468×1 categorical Values: attack 294 earthquake 2 energy emergency 188 equipment fault 156 fire 25 severe storm 338 thunder storm 201 unknown 24 wind 95 winter storm 145

Many of the examples on this page use `gather`

to
evaluate expressions and bring the results into memory. However, in
these examples it is also trivial that the results fit in memory,
since only a few rows are indexed at a time.

In cases where you are unsure if the result of an expression
will fit in memory, it is recommended that you use `gather(head(X))`

or `gather(tail(X))`

.
These commands still evaluate all of the queued calculations, but
return only a small amount of the result that is guaranteed to fit
in memory.

If you are certain that the result of a calculation will not
fit in memory, use `write`

to evaluate the tall
array and write the results to disk instead.

`gather`

| `head`

| `table`

| `tail`

| `tall`

| `topkrows`