Main Content

read

Read next step from radar scenario recording

Since R2021a

Description

example

[simTime,poses,detections,sensorConfigs,sensorPlatformIDs,emissions,emitterConfigs,emitterPlatformIDs] = read(recording) returns one recorded data set at the simulation time, simTime, from a radar scenario recording.

Examples

collapse all

Load prerecorded data from a radar scenario. The data is saved as a struct with the variable name recordedData. Create a radarScenarioRecording object using the recorded data.

load recordedRadarScenarioData.mat
recording = radarScenarioRecording(recordedData);

Construct a theater plot to display the recorded data using multiple plotters.

tp = theaterPlot('AxesUnits',["km" "km" "km"], ...
    'XLimits',[-50 50]*1e3,'YLimits',[-50 50]*1e3,'ZLimits',[-20 20]*1e3);
to = platformPlotter(tp,'DisplayName','Tower','Marker','d');
pp = platformPlotter(tp,'DisplayName','Targets');
dp = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','black');
cp = coveragePlotter(tp,'DisplayName','Radar Beam');

coverage = struct('Index',1,'LookAngle',[0;-7],'FieldOfView',[1;10], ...
    'ScanLimits',[0 365;-12 -2],'Range',100e3,'Position',[0;0;-15], ...
    'Orientation',eye(3));

Run the recorded scenario and animate the results.

scanBuffer = {};
while ~isDone(recording)
    % Step the reader to read the next frame of data
    [simTime,poses,covcon,dets,senconfig] = read(recording);
    scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
    plotPlatform(to,poses(1).Position);
    plotPlatform(pp,reshape([poses(2:4).Position]',3,[])');
    plotCoverage(cp,covcon);
    if ~isempty(dets)
        plotDetection(dp,cell2mat(cellfun(@(c) c.Measurement(:)', scanBuffer, 'UniformOutput', false)));
    end
    
    % Clear the buffer when a 360 degree scan is complete
    if senconfig.IsScanDone
        scanBuffer = {};
        dp.clearData;
    end
end

Input Arguments

collapse all

Radar scenario recording, specified as a radarScenarioRecording object.

Output Arguments

collapse all

Simulation time, returned as a nonnegative scalar.

Poses of platforms, returned as an array of structures. Each structure has these fields.

FieldDescription
PlatformID

Unique identifier for the platform, specified as a positive integer. This is a required field with no default value.

ClassID

User-defined integer used to classify the type of target, specified as a nonnegative integer. Zero is reserved for unclassified platform types and is the default value.

Position

Position of target in scenario coordinates, specified as a real-valued 1-by-3 row vector.

  • If the coordinateSystem argument is specified as 'Cartesian', then Position is a three-element vector of Cartesian position coordinates in meters.

  • If the coordinateSystem argument is specified as 'Geodetic', then Position is a three-element vector of geodetic coordinates: latitude in degrees, longitude in degrees, and altitude in meters.

Velocity

Velocity of platform in scenario coordinates, specified as a real-valued 1-by-3 row vector. Units are meters per second. The default value is [0 0 0].

Acceleration

Acceleration of the platform in scenario coordinates, specified as a 1-by-3 row vector in meters per second squared. The default value is [0 0 0].

Orientation

Orientation of the platform with respect to the local scenario navigation frame, specified as a scalar quaternion or a 3-by-3 rotation matrix. Orientation defines the frame rotation from the local navigation coordinate system to the current platform body coordinate system. Units are dimensionless. The default value is quaternion(1,0,0,0).

AngularVelocity

Angular velocity of the platform in scenario coordinates, specified as a real-valued 1-by-3 vector. The magnitude of the vector defines the angular speed. The direction defines the axis of clockwise rotation. Units are degrees per second. The default value is [0 0 0].

Detections, returned as a cell array of objectDetection objects.

Sensor configurations, returned as an array of structures. Each structure has these fields.

FieldDescription
SensorIndex

Unique sensor index, returned as a positive integer.

IsValidTime

Valid detection time, returned as true or false. IsValidTime is false when detection updates are requested between update intervals specified by the update rate.

IsScanDone

IsScanDone is true when the sensor has completed a scan.

FieldOfView

Field of view of the sensor, returned as a 2-by-1 vector of positive real values, [azfov;elfov]. azfov and elfov represent the field of view in azimuth and elevation, respectively.

RangeLimits

Minimum and maximum range of sensor, in meters, specified as a 1-by-2 nonnegative real-valued vector of the form [rmin,rmax].

RangeRateLimits

Minimum and maximum range rate of sensor, in meters per second, specified as a 1-by-2 real-valued vector of the form [rrmin,rrmax].

MeasurementParameters

Sensor measurement parameters, returned as an array of structures containing the coordinate frame transforms needed to transform positions and velocities in the top-level frame to the current sensor frame.

Platform IDs of sensors, returned as an array of nonnegative integers.

Emissions, returned as a cell array of emission objects such as radarEmission objects.

Emitter configurations, returned as an array of structures. Each structure has these fields.

FieldDescription
EmitterIndex

Unique emitter index, returned as a positive integer.

IsValidTime

Valid emission time, returned as 0 or 1. IsValidTime is 0 when emitter updates are requested at times that are between update intervals specified by the UpdateInterval property.

IsScanDone

Whether the emitter has completed a scan, returned as true or false.

FieldOfView

Field of view of the emitter, returned as a two-element vector [azimuth; elevation] in degrees.

MeasurementParameters

Emitter measurement parameters, returned as an array of structures containing the coordinate frame transforms needed to transform positions and velocities in the top-level frame to the current emitter frame.

Platform IDs of emitters, returned as an array of nonnegative integers.

Version History

Introduced in R2021a