Renewable Energy
Use these examples to learn how to model photovoltaic and wind systems and generators.
Featured Examples
Model Wind Power System with Simplified Generator
Model a low-fidelity three-phase grid-connected wind power system by using a Simplified Generator block. Use this low-fidelity electrical model for planning and pitch control studies.
- Since R2024b
- Open Live Script
Evaluate Performance of Grid-Forming Battery Energy Storage Systems in Solar PV Plants
Evaluate the performance of a grid-forming (GFM) battery energy storage system (BESS) in maintaining a stable power system with high solar photovoltaic (PV) penetration. You can evaluate the power system during both normal operation or contingencies, like large drops in PV power, significant load changes, grid outages, and faults. You can download this model in MATLAB® or access it from MATLAB Central File Exchange and GitHub®.
- Since R2023b
- Open Live Script
Energy Scavenger
How the performance of a rotational energy scavenger can be explored using a simple representative model. Electrical energy is produced from an off-center mass attached to the shaft of a DC motor. The mass, geometry, motor and electrical parameters must be matched to the expected mechanical excitation. The generated electrical power is less than the extracted mechanical power primarily due to motor winding losses and viscous damping for the rotor. This example is based on Nunna, K. "Constructive interconnection and damping assignment passivity-based control with applications", Imperial College London (2014). The model here is simplified in that the DC-DC converter is omitted.
Kinetic Energy Recovery System
Operation of a Kinetic Energy Recovery System (KERS) on a Formula 1 car. The model permits the benefits to be explored. During braking, energy is stored in a lithium-ion battery and ultracapacitor combination. It is assumed that a maximum of 400KJ of energy is to be delivered in one lap at a maximum power of 60KW. Design parameters are the weight of the battery, ultracapacitor and motor-generator. If these parameters are all set to the very small value of 0.01kg, the lap time is 95.0 seconds, this corresponding to a car with no KERS. With default values set here, approximately 1/4 of a second is saved on the lap time when using any available electrical power when not braking. Applying KERS only to selected corners requires a larger ultracapacitor to show any significant benefit.
Photovoltaic Generator
Create system-level model of a photovoltaic generator that can be used to simulate performance using historical irradiance data. Here the model is tested by varying the irradiance which approximates the effect of varying cloud cover. Power generation steps immediately following the irradiance change. Environmental temperature also varies during the test. The DC-AC converter efficiency is assumed to be a fixed 97 percent, this value having been determined from the SolarPowerInverter example model.
Solar Cell Power Curve
Generate the power-voltage curve for a solar array. Understanding the power-voltage curve is important for inverter design. Ideally the solar array would always be operating at peak power given the irradiance level and panel temperature.
Solar Panel Parameterization Validation
Model a solar panel by using data from a manufacturer datasheet. This example uses the datasheet data to generate current-voltage and power-voltage curves for the solar panel. The power-voltage curve helps you identifying the peak power for a given irradiance level and panel cell temperature. This peak power is then useful when designing an inverter.
Three-Phase Asynchronous Wind Turbine Generator
Model an induction machine used as a wind turbine generator.
Three-Phase Synchronous Machine Governor Control Design
Script shows how you can linearize a Simscape™ Electrical™ model to support control system stability analysis and design. It uses example model SMGovernorDesign.
Photovoltaic Thermal (PV/T) Hybrid Solar Panel
Model a multi-domain power cogeneration system using Simscape™, Simscape Electrical™, and Simscape Fluids™.
Single-Phase Grid-Connected Solar Photovoltaic System
Model a rooftop single-phase grid-connected solar photovoltaic (PV) system. This example supports design decisions about the number of panels and the connection topology required to deliver the target power. The model represents a grid-connected rooftop solar PV system without an intermediate DC-DC converter. To parameterize the model, the example uses data from a solar panel manufacturer datasheet. Solar power is injected into the grid with unity power factor (UPF).
Three-Phase Grid-Connected Solar Photovoltaic System
Model a three-phase grid-connected solar photovoltaic (PV) system. This example supports design decisions about the number of panels and the connection topology required to deliver the target power. The model represents a grid-connected rooftop solar PV system without an intermediate DC-DC converter. To parameterize the model, the example uses data from a solar panel manufacturer datasheet. Solar power is injected into the grid with unity power factor (UPF).
Solar PV System with MPPT Using Boost Converter
The design of a boost converter for controlling the power output of a solar photovoltaic (PV) system. In this example, you learn how to:
Stand-Alone Solar PV AC Power System with Battery Backup
The design of a stand-alone solar photovoltaic (PV) AC power system with battery backup. In this example, you learn how to:
Stand-Alone Solar PV DC Power System with Battery Backup
The design of a stand-alone solar photovoltaic (PV) DC power system with battery backup. In this example, you learn how to:
Piezo Bender Energy Harvester
Model a device that harvests energy from a vibrating object by using a piezo bender. The device uses this energy to charge a battery and power a load. These devices are common in low-power applications that require energy autonomy, such as wearable devices or sensors in vehicles.
Analysis of Solar Photovoltaic System Shading
Implement shading effects in a solar photovoltaics (PV) plant or module. The solar plant block is created using Simscape™ language. Shading in a solar plant or module occurs when solar irradiance is not uniform across all solar PV modules or cells. You can use this example to study the effects of shading and PV cell junction temperature in a large interconnected solar plant or a single PV module. To improve the maximum power and to protect the solar panel from overheating, the Solar Plant block comprises bypass and blocking diodes. To define the shading, set the values of the Irradiance and Temperature parameters.
Green Hydrogen Microgrid
A DC islanded microgrid that provides power to an electrolyzer using a solar array and an energy storage system. You can use this model to evaluate the operational characteristics of producing green hydrogen over a 7-day period by power from a solar array, or from a combination of a solar array and an energy storage system. The model includes electrical, thermal liquid, and thermal gas domains.
Wind Turbine
Model, parameterize, and test a wind turbine with a supervisory, pitch angle, MPPT (maximum power point tracking), and derating control. When you run the plot function, it generates a plot of the state transitions, normalized physical quantities such as the wind speed, wind turbine rotation speed, generator power, and pitch angle.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)