Main Content

oobEdge

Out-of-bag classification edge for bagged classification ensemble model

Description

e = oobEdge(ens) returns the classification edge e for the out-of-bag data in the bagged classification ensemble model ens.

example

e = oobEdge(ens,Name=Value) specifies additional options using one or more name-value arguments. For example, you can specify the indices of the weak learners to use for calculating the edge, and the aggregation level for the output.

Examples

collapse all

Load Fisher's iris data set.

load fisheriris

Train an ensemble of 100 bagged classification trees using the entire data set.

Mdl = fitcensemble(meas,species,'Method','Bag');

Estimate the out-of-bag edge.

edge = oobEdge(Mdl)
edge = 
0.8767

Input Arguments

collapse all

Bagged classification ensemble model, specified as a ClassificationBaggedEnsemble model object trained with fitcensemble.

Name-Value Arguments

collapse all

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: oobEdge(ens,Learners=[1 2 3 5]) specifies to use the first, second, third, and fifth learners in the ensemble ens.

Indices of the weak learners in the ensemble to use with oobEdge, specified as a vector of positive integers in the range [1:ens.NumTrained]. By default, the function uses all learners.

Example: Learners=[1 2 4]

Data Types: single | double

Aggregation level for the output, specified as "ensemble", "individual", or "cumulative".

ValueDescription
"ensemble"The output is a scalar value, the loss for the entire ensemble.
"individual"The output is a vector with one element per trained learner.
"cumulative"The output is a vector in which element J is obtained by using learners 1:J from the input list of learners.

Example: Mode="individual"

Data Types: char | string

Flag to run in parallel, specified as a numeric or logical 1 (true) or 0 (false). If you specify UseParallel=true, the oobEdge function executes for-loop iterations by using parfor. The loop runs in parallel when you have Parallel Computing Toolbox™.

Example: UseParallel=true

Data Types: logical

More About

collapse all

Extended Capabilities

expand all

Version History

Introduced in R2011a

expand all