Clear Filters
Clear Filters

Using RK4 numerically rather than using an ODE solver

8 views (last 30 days)
Use the 4th order Runge-Kutta (RK4) method with a step size of h = 0.1 and h=0.001 to find approximate values at t = 0.1, 0.2, …. to 5.0
I have the following code set up for this problem: function rungekutta
%Define initial values of h, t and y h = 0.1; t = 0; y = 1;
fprintf(Step 0: t = %12.8f, w = %12.8f\n’, t, w);
%Write for loop
for i=1:5
k1 = h*f(t,y);
k2 = h*f(t+h/2, y+k1/2);
k3 = h*f(t+h/2, y+k2/2);
k4 = h*f(t+h, y+k3);
y = y + (k1+2*k2+2*k3+k4)/6;
t = t + h;
fprintf(Step %d: t = %6.4f, w = %18.15f\n’, i, t, w); end
%%%%%%%%%%%%%%%%%%
function v = f(t,y)
v = y'= 2-e^-4*t-2*y;;
My t values range from 0 to 5 with step sizes of (0.1) and then another step size of (0.001). I am not sure how to fix the fprintf portion. Any help is appreciated.
Trying to follow the code found below on a website soruce: function rungekutta
h = 0.5;
t = 0;
w = 0.5;
fprintf(Step 0: t = %12.8f, w = %12.8f\n’, t, w);
for i=1:4
k1 = h*f(t,w);
k2 = h*f(t+h/2, w+k1/2);
k3 = h*f(t+h/2, w+k2/2);
k4 = h*f(t+h, w+k3);
w = w + (k1+2*k2+2*k3+k4)/6;
t = t + h;
fprintf(Step %d: t = %6.4f, w = %18.15f\n’, i, t, w); end %%%%%%%%%%%%%%%%%%
function v = f(t,y)
v = y-tˆ2+1;

Accepted Answer

Amit
Amit on 8 Feb 2014
f = @(t,y) (2 - exp(-4*t) - 2*y);
h = 0.1; % Define Step Size
t_final = 5;
t = 0:h:t_final;
y = zeros(1,numel(t));
y(1) = 1; % y0
% You know the value a t = 0, thats why you'll state with t = h i.e. i = 2
for i = 2:numel(t)
k1 = h*f(t(i-1),y(i-1));
k2 = h*f(t(i-1)+h/2, y(i-1)+k1/2);
k3 = h*f(t(i-1)+h/2, y(i-1)+k2/2);
k4 = h*f(t(i-1)+h, y(i-1)+k3);
y(i) = y(i-1) + (k1+2*k2+2*k3+k4)/6;
disp([t(i) y(i)]);
end
  1 Comment
KayLynn
KayLynn on 8 Feb 2014
Thank you. I thought it was similiar but wasnt quite sure if the set up was generally the same since more variables have been added. You have been a great help today

Sign in to comment.

More Answers (0)

Categories

Find more on Oceanography and Hydrology in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!