Linear fit through loglog plots.

3 views (last 30 days)
With the iteration data below find the best linear fit in the formula above and determine the slope, α (order of convergence), and the value of λ. How would I go about coding this in MatLab? I think I need to use loglog plots, but I'm not exactly sure how to go about this. I have used Newton's Method of approximation as shown below.
f = @(x) 2*exp(-2*x) + 4*sin(x) - 2*cos(2*x);
fp = @(x) 4*(-exp(-2*x) + sin(2*x) + cos(x));
x0 = 0.3;
N = 10;
tol = 1E-6;
x(1) = x0;
n = 2;
nfinal = N + 1;
while (n <= N + 1)
fe = f(x(n - 1));
fpe = fp(x(n - 1));
x(n) = x(n - 1) - fe/fpe;
if (abs(fe) <= tol)
nfinal = n;
break;
end
n = n + 1;
end
figure, plot(0:nfinal - 1,x(1:nfinal),'o-')
title('Newton''s Method')
xlabel('Iterations')
ylabel('Root Approximation')
table([1:length(x)]', x', 'VariableNames', {'Iteration' 'Root Approximation'})
x(n) = x(n - 1) - fe/fpe;
fprintf('Iteraion Root Approximation Tolerance Level\n')
fprintf('%3d: %20g %20g\n', n, x(n), abs(fe));
Thank you in advance for your help.
  1 Comment
Kevin Osborn
Kevin Osborn on 1 Oct 2021
I figured it out actually! Just needed to work on it a bit longer.

Sign in to comment.

Accepted Answer

Kevin Osborn
Kevin Osborn on 1 Oct 2021
This is how I plotted it, before cleaning up the graph to make it more pretty and what not.
y = log(abs(x(3:end) - x(2:end-1)));
x = log(abs(x(2:end-1) - x(1:end-2)));
p = polyfit(x,y,1);
alpha = p(1);
lambda = exp(p(2));
scatter(x,y)
hold on
plot(x, alpha*x + log(lambda))
hold off
legend('Data','Fitted line','location','best')
title(['\alpha = ',num2str(alpha),' \lambda = ',num2str(lambda)])

More Answers (0)

Categories

Find more on Biotech and Pharmaceutical in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!